一.为什么写这边文章
首先,缓存由于其高并发和高性能的特性,已经在项目中被广泛使用。在读取缓存方面,大家没啥疑问,都是按照下午的流程来进行业务操作:
但是,在更新缓存方面,对于更新完数据库,是更新缓存呢,还是删除缓存?又或者是先删除缓存,再更新数据库?其实这一块是存在很大的争议。
二、文章结构
- 讲解缓存更新策略;
- 对每种策略进行缺点分析;
- 针对缺点给出改进方案;
三、正文
先做一个说明,从理论上来说,给缓存设置过期时间,是保证最终一致性的解决方案。这种方案下,我们可以对缓存的数据设置过期时间,所有的写操作以数据库为准,对缓存操作只是尽最大努力即可。也就是说如果数据库写成功,缓存更新失败,那么只要到达过期时间,则后面的读请求自然会从数据库中读取新值,然后回填缓存。因此,接下来讨论的思路不依赖于给缓存设置过期时间这个方案。在这里,我们讨论三种更新策略:
- 先更新数据库,再更新缓存
- 先删除缓存,再更新数据库
- 先更新数据库,再删除缓存
为什么没有先更新缓存,再更新数据库这种策略?答案不用说了吧。
四、先更新数据库,再更新缓存
这套方案,大家是普遍反对的,为什么呢?有如下两点原因:
原因一:线程安装角度
同时又请求A和请求B进行更新操作,那么会出现:
- 线程A更新了数据库
- 线程B更新了数据库
- 线程B更新了缓存
- 线程A更新了缓存
这就出现请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B比A更早更新了缓存。这就导致了脏数据,因此不考虑!
原因二、业务场景角度
有如下两点:
1)如果你是一个写数据库场景比较多,而读数据场景比较少的业务需求,采用这种方案就会导致,数据压根还没读到,缓存就被频繁的更新,浪费性能。
2)如果你写入数据库的值,并不是直接写入缓存的,而是要经过一系列负责的计算再写入缓存。那么,每次写入数据库后,都要再次计算写入缓存的值,无疑是浪费性能的。显然,删除缓存更为合适。
接下来讨论的就是争议最大的,先删除缓存,再更新数据库。还是先更新数据库,再删除缓存的问题。
五、先删除缓存,再更新数据库
该方案会导致不一致的原因:同时有一个请求A进行更新操作,另一个请求B进行查询操作。那么就会出现以下情形:
- 请求A进行写操作,删除缓存
- 请求B查询发现缓存不存在
- 请求B去数据库查询得到旧值
- 请求B将旧值写入缓存
- 请求A将新值写入数据库
上述情况就会导致不一致的请求出现。而且,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。
那么,该如何解决呢?采用延时双删除策略!伪代码如下:
public void write(String key, Object data){
redis.delKey(key);
db.updateData(data);
Thread.sleep(1000);
redis.deleKey(key);
}
解释一下:
- 先淘汰缓存
- 再写数据库(这两步和原来一样)
- 休眠1秒,再次淘汰缓存
这么做,可以将1秒内所造成的缓存脏数据,再次删除!
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。