4

Service Mesh(服务网格)会是今年微服务生态的主角吗?从趋势来看,众多企业正在将这项理微服务复杂性的技术/工具,搬进他们的IT“火药库”之中。

什么是Service Mesh?

根据Linkerd CEO William Morgan定义,Service Mesh是用于处理服务间通信的基础设施层,用于在云原生应用复杂的服务拓扑中实现可靠的请求传递。在实践中,Service Mesh通常是一组与应用一起部署,但对应用透明的轻量级网络代理。

Service Mesh与传统基础设施层不同之处在于,它形成了一个分布式的互连代理网络,以sidecar形式部署在服务两侧,服务对于代理无感知,且服务间所有通信都由代理进行路由。

为什么需要Service Mesh?

“Smart endpoint and dumb pipes”是微服务架构在集成服务时采用的一个核心理念,这一理念改变了过去臃肿集中的ESB(企业服务总线),无疑是正确方向上的一大进步,但同时也给我们出了一些难题——多智能才不会过于智能,而服务轻重大小的程度如何拿捏?我们应该如何处理微服务系统中服务间交互的复杂性?放在服务内部还是外部?如果是内部,如何处理业务逻辑关系,或者应该与基础设施更为相关?如果是外部,如何避免重蹈ESB的覆辙?

皮的不谈,先来看看处理服务间通信时需要关注的点:

  • 服务发现
  • 负载均衡
  • 路由
  • 流量控制
  • 通信可靠性
  • 弹性
  • 安全
  • 监控/日志

似乎都是老生常谈,存在于任何需要处理网络的分布式系统之中,区别在于,当所涉及微服务数量呈指数级增加,这些问题也会被相应放大。

一个已经被广泛应用的解决方案是利用api网关来处理服务外部和服务之间的请求,提供例如服务发现、路由、监控、流量控制等。

然而,api网关有一个比较致命的缺陷,它容易出现单点故障并且实践不当很有可能会变得异常臃肿。另一方面,api网关核心是面向用户,也就是说它可以解决从用户到微服务的流量问题,但不能解决所有问题,而我们需要的是一个完整的方案,或者至少是一些能够与api网关互补的方案和工具。

另一种选择是在网络堆栈的较低层级(4/3)进行可靠性、监控、流量控制等方面处理。这种选择的问题是,在较低较低的操作难易满足应用层的问题。联想end-to-end(端到端)的理论,我们前面提到的那几个关注点实际上还是集中在应用层,也只能在应用层成功实现。

像Netflix、Twitter等SOA/微服务的早期采用者,他们通过建立内部库的方式处理这些问题,然后提供给所有服务使用。这种方法的问题在于,把库扩展到成百上千个微服务中难度极高,而且这些库相对来说是比较”脆弱“的,我们很难保证他们可以适应所有的技术堆栈选择。

程度上来说,Service Mesh与这些库很类似,但Service Mesh是与服务相邻的独立进程。服务连接到代理,代理反过来又与其他代理(HTTP1.1/2、GRPC)进行通信。它们是相对独立的进程,在应用层或应用层之下分布和运行,进而解决了上述两个方案存在的缺陷。

Service Mesh架构

Service Mesh由data plane构成,其中所有服务通过sidecar代理进行服务通信。(所有代理相互连接形成一个Mesh,Service Mesh由此得名)网格同时包含一个control plane——可以将所有独立的sidecar代理连接到一个分布式网络中,并设置网格还包括一个控制平面——它将所有独立的sidecar代理连接到一个分布式网络中,并设置由data plane指定的策略。

Control plane定义服务发现、路由、流量控制等策略。这些策略可以是全局的,也可以是限定的。Data plane负责在通信时应用和执行这些策略。

最后

总结来说,Service Mesh是“时间的产物”,Docker、Kubernetes等容器技术直接推进了对于Service Mesh的需求,让复杂的系统可以被轻松部署和管理。

未来Service Mesh将如何发展还未可知,或许会像TCP/IP一样形成标准,或许不同工具和平台会独具一格……但有一点是确认的,Service Mesh对于微服务生态的价值令人难以忽视,能够将繁重的服务治理工作变得简单高效,何乐而不为?


相关阅读

开源PaaS Rainbond原生支持Service Mesh,在线体验请注册公有云(新用户7天免费)


Rainbond
764 声望56 粉丝

不用懂 Kubernetes 的云原生应用管理平台