前言

上一篇文章【大数据实践】游戏事件处理系统(2)——事件处理-logstash中,对日志的处理进行了讲解,其事件最终要输出到kafka集群中。因此,在本文章中,将介绍简单kafka集群的创建过程。本篇文章完成后,系统应该能够跑通日志收集、处理及输出到kafka,并能使用kafka的工具验证消息的正确性。

启动zookeeper

启动命令:

bin/zookeeper-server-start.sh config/zookeeper.properties

zookeeper.properties配置文件中, 主要配置参数为:

# the directory where the snapshot is stored.
dataDir=/tmp/zookeeper
# the port at which the clients will connect
clientPort=2181
# disable the per-ip limit on the number of connections since this is a non-production config
maxClientCnxns=0
  • dataDir:存放内存数据库镜像和更新数据库的事务日志(transaction log)的目录。
  • clientPort:zookeeper服务的端口号。
  • maxClientCnxns:每个ip连接zookeeper时连接数的限制,如果不设置或设为0时,表示连接数没有限制。注意:kafka的broker连接也计算在内,因此,如果maxClientCnxns = 1,那么不能在同一台机器上即启动kafka server连接zookeeper,又启动kafka producer来连接。

启动Kafka Server

启动命令:

bin/kafka-server-start.sh config/server.properties 

执行成功后,即启动了一个broker(代理),其中server.properties文件中对该broker做了配置,主要有:

############################# Server Basics #############################

# The id of the broker. This must be set to a unique integer for each broker.
# 代理ID,每个代理的ID必须是唯一的
broker.id=0

############################# Socket Server Settings #############################

# The address the socket server listens on. It will get the value returned from
# java.net.InetAddress.getCanonicalHostName() if not configured.
#   FORMAT:
#     listeners = listener_name://host_name:port
#   EXAMPLE:
#     listeners = PLAINTEXT://your.host.name:9092
# listeners=PLAINTEXT://:9092

# 如果不设置,则默认的java.net.InetAddress.getCanonicalHostName()得到的主机名,默认9092端口和PLAINTEXT协议。
# 协议还有PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL等。
listeners=PLAINTEXT://localhost:9092

# Hostname and port the broker will advertise to producers and consumers. If not set,
# it uses the value for "listeners" if configured.  Otherwise, it will use the value
# returned from java.net.InetAddress.getCanonicalHostName().
#advertised.listeners=PLAINTEXT://your.host.name:9092

# 通知给生成者和消费者的监听地址,需要和listeners一样。如果不配置该选项,则默认会将上面
# listeners配置的地址发送给生产者和消费者
advertised.listeners=PLAINTEXT://localhost:9092

# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
## 安全协议
#listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL


# The number of threads that the server uses for receiving requests from the network and sending responses to the network
# 用于接收网络请求以及发送网络请求的线程数。
num.network.threads=3

# The number of threads that the server uses for processing requests, which may include disk I/O
# 用于处理请求(可能包含韩磁盘I/O处理)的线程数。
num.io.threads=8

# The send buffer (SO_SNDBUF) used by the socket server
# socket发送缓冲区大小(字节数),默认100kb
socket.send.buffer.bytes=102400

# The receive buffer (SO_RCVBUF) used by the socket server
# socket接收缓冲区大小(字节数),默认100kb
socket.receive.buffer.bytes=102400

# The maximum size of a request that the socket server will accept (protection against OOM)
# 为防止OutOfMemery异常而设置的每个请求最大数据大小,默认100Mb。
socket.request.max.bytes=104857600

############################# Log Basics #############################
# 日志的基本设置

# A comma separated list of directories under which to store log files
# kafka接收到日志(消息)后,这些日志存放的目录(而不是kafka服务输入的日志)。
# 可以指定多个目录,中间用逗号分隔。
log.dirs=/tmp/kafka-logs

# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
# 该borker的分区数量,分区数量多,则并行高,但同时也意味着brokers之间将有更多的文件。
num.partitions=3

# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
# 当服务启动时,为每个数据目录分配用于恢复数据的线程数,或者是当服务关闭时,为每个数据目录分配用于写入数据的线程数。
# 默认为1, 但对于磁盘阵列(RAID array),建议增加该值的大小。
num.recovery.threads.per.data.dir=1

############################# Internal Topic Settings  #############################
# 内部的主题设置,卡夫卡主题管理相关的配置项。
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended for to ensure availability such as 3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1

############################# Log Flush Policy #############################
## 日志写入到磁盘文件的策略
## 配置的时候,需要在性能、可靠性和数据吞吐量之间进行权衡:
##  1. 可靠性:如果不使用备份,不将数据flush到磁盘,可能导致数据丢失。
##  2. 延迟:如果消息记录数设置的太大,可能导致一次要flush的数据太多而造成性能瓶颈。
##  3. 吞吐量:将数据flush到磁盘通常是最昂贵的操作,如果设置的时间间隔太小,可能带来过多寻道。

# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
#    1. Durability: Unflushed data may be lost if you are not using replication.
#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.

# The number of messages to accept before forcing a flush of data to disk
# 每当消息记录数达到10000时flush一次数据到磁盘
#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush
# 每间隔1000毫秒flush一次数据到磁盘
#log.flush.interval.ms=1000

############################# Log Retention Policy #############################
## 日志文件保留策略
## 1. 每隔一段时间删除
## 2. 当日志达到一定大小的时候被删除
## 当达到以上任意一条,则日志被删除

# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.

# The minimum age of a log file to be eligible for deletion due to age
# 默认日志文件保留时间为1周
log.retention.hours=168

# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
# 保留文件大小,默认保留最近的1G。
#log.retention.bytes=1073741824

# The maximum size of a log segment file. When this size is reached a new log segment will be created.
# 日志文件最大大小,超过该大小,将会新建另外一个日志文件。
# topic每个分区的最大文件大小,一个topic的大小限制 = 分区数*log.retention.bytes。-1表示没有大小限。
log.segment.bytes=1073741824

# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
# 日志文件的检查周期,以判断是否达到处理策略规定的条件
log.retention.check.interval.ms=300000

############################# Zookeeper #############################
## Zookeeper相关设置

# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.

## 连接到zookeeper集群,使用逗号分隔各个zookeeper服务的ip:port对。
zookeeper.connect=localhost:2181

# Timeout in ms for connecting to zookeeper
## ZooKeeper的连接超时时间
zookeeper.connection.timeout.ms=6000

############################# Group Coordinator Settings #############################
## 组协调者相关设置


# The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
## 空消费组延时时间,设为0是为了方便开发,实际发布生成线中配置为3秒更好。
group.initial.rebalance.delay.ms=0

从这个配置文件中,大概可以窥探到kafka有的一些功能,里面很多配置自己也不是很懂,后续再专门研究一下。

如果只是简单地试验尝试,使用下面几个配置就可以了:

  • broker.id=0
  • listeners=PLAINTEXT://127.0.0.1:9092
  • advertised.listeners=PLAINTEXT://127.0.0.1:9092
  • num.partitions=3(为了研究多分区)
  • zookeeper.connect=localhost:2181(连到zookeeper)

启动第二个broker

复制server.properties文件为server-1.propertis,修改配置,如:

  • broker.id=1
  • listeners=PLAINTEXT://127.0.0.1:9093
  • advertised.listeners=PLAINTEXT://127.0.0.1:9093
  • num.partitions=3(为了研究多分区)
  • zookeeper.connect=localhost:2181(连到zookeeper)

执行启动命令:

bin/kafka-server-start.sh config/server-1.properties

topic管理

创建topic

bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 2 --partitions 2 --topic game-score
  • 新创建了一个game-score的topic。
  • replication-factor指的是topic需要在几个不同的broker保存。
  • partition为2,表示该主题有2个partition。

查看topic列表

bin/kafka-topics.sh --list --zookeeper localhost:2181

可以看到信息:

game-score

查看topic信息

bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic game-score

可看到如下信息:

Topic:game-score    PartitionCount:2    ReplicationFactor:2    Configs:
    Topic: game-score    Partition: 0    Leader: 1    Replicas: 1,0    Isr: 1,0
    Topic: game-score    Partition: 1    Leader: 0    Replicas: 0,1    Isr: 0,1
  • leader:表示当前指定的负责所有读和写的partition(分区),每个分区都有可能被选为leader。
  • replicas:表示保存副本的结点列表,不管他们是否为leader结点,也不管他们是否存活。
  • Isr:in-sync replicas的简写,表示存活且副本都已同步的的broker集合,是replicas的子集。

删除topic

bin/kafka-topics.sh --delete --zookeeper localhost:2181 --topic game-score

并不会真正删除,而是标记为删除:

Topic game-score is marked for deletion.
Note: This will have no impact if delete.topic.enable is not set to true.

修改topic的分区数

bin/kafka-topics.sh --zookeeper master:2181 --alter --topic game-score --partitions 2
  • 试验发现:无法使用--alter命令修改--replication-factor

查看topic各个分区的消息的信息

bin/kafka-run-class.sh kafka.tools.ConsumerOffsetChecker --group testgroup --topic test0 --zookeeper 127.0.0.1:2181

启动一个消费者

启动一个消费者,用于查看消息是否到达kafka集群:

bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic game-score --from-beginning

该命令会将消息dump出来,显示在控制台。

logstash output kafka配置

要想logstash将消息发送到kafka集群中,需要在logstash的output模块中使用kafka插件

配置如下:

output {
    kafka{
            # 主题ID
                topic_id => "game-score"
               # kafka服务的地址
            bootstrap_servers => "127.0.0.1:9092" 
            # 一定要注明输出格式
            codec => "json"
    }
}

配置好之后,将filebeat,logstash,kafka都启动好,往监控日志文件中新增日志,应该就能在kafka消费者控制台看到消息了。

这里贴一下成果,以示对自己的鼓励:

> bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic game-score --from-beginning

{"bet_count":"1","room_id":"002","score_type":"balance","game_time":"14:26:37","desk_id":"512","game_date":"2015-11-02","game_id":"2015-11-02_14:26:37_ÐÂÊÖÇø_1_002_512","game":"PDK","beat":{"name":"admindeMacBook-Pro-2.local","version":"6.2.4","hostname":"admindeMacBook-Pro-2.local"},"tax":0,"time":"2015-11-02 14:26:54,355","tags":["beats_input_codec_plain_applied"],"offset":21444,"users":[{"username":"ly6","win":15}],"bet_name":"ÐÂÊÖÇø","prospector":{"type":"log"},"source":"/Users/admin/Documents/workspace/elk/filebeat-6.2.4-darwin-x86_64/hjd_IScoreService.log"}

实现一个简单的Kafka消费者

pom.xml文件中,加入下依赖:

<dependencies>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>1.0.1</version>
        </dependency>
    </dependencies>

GameScoreConsumer.java如下:

package consumers;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.util.Collections;
import java.util.Properties;

public class GameScoreConsumer {

    public static void main(String[] args) {
        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props.put("group.id", "game-score-consumers");
        props.put("enable.auto.commit", "true");
        props.put("auto.commit.interval.ms", "1000");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);

        consumer.subscribe(Collections.singletonList("game-score"));

        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(1000);
            for (ConsumerRecord<String, String> record : records) {
                System.out.println("Received message: (" + record.key() + ", " + record.value() + ") at offset " + record.offset());
            }
        }
    }

}

启动,在日志文件中加入新的日志,该消费者即可接收到相应的信息。

小结

至此,从日志收集、处理到保存到消息中间件kafka的整个流程都已经走通。【大数据实践】游戏事件处理系统系列文章主要更倾向于试验,因此对深一层的理论研究和介绍不是很多,后面可能开另外的系列来讲。


SnaiLiu
36 声望11 粉丝