Problem
A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.
Example
Given three people living at (0,0), (0,4), and (2,2):
1 - 0 - 0 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0
The point (0,2) is an ideal meeting point, as the total travel distance of 2 + 2 + 2 = 6 is minimal. So return 6.
Solution
public class Solution {
/**
* @param grid: a 2D grid
* @return: the minimize travel distance
*/
public int minTotalDistance(int[][] grid) {
// Write your code here
List<Integer> x = new ArrayList<>();
List<Integer> y = new ArrayList<>();
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (grid[i][j] == 1) {
x.add(i);
y.add(j);
}
}
}
return getMD(x) + getMD(y);
}
public int getMD(List<Integer> nums) {
// zhong dian is here
Collections.sort(nums);
int i = 0, j = nums.size()-1;
int distance = 0;
while (i < j) {
distance += nums.get(j--) - nums.get(i++);
}
return distance;
}
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。