这道题重定义了什么叫可行解:
一般而言,可行解需要满足强约束性条件集,而本题的可行解就是单一弱约束性条件(distinct integers,只需要当前集合内的元素不重复即可算作一个可行解) ,算是比较简单的入门级dfs + backtracing 题目。
class Solution {
public:
void dfs(vector<vector<int>> & vct,vector<int> &cur,vector<int>& nums,int index)
{
vct.push_back(cur);
int n = nums.size();
if(index >= n)
return;
for(int i = index;i < n;++i)
{
cur.push_back(nums[i]);
dfs(vct,cur,nums,i + 1);
cur.pop_back();
}
}
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> vct;
vector<int> cur;
dfs(vct,cur,nums,0);
return vct;
}
};
diff vs the pre version:
有重复的元素怎么算?相关的思路雷同于Leetcode - 040. Combination Sum II
class Solution {
public:
void dfs(vector<vector<int>> &vct, vector<int> &cur, vector<int>& nums,vector<int> & used,int index)
{
vct.push_back(cur);
int n = nums.size();
if (index >= n)
return;
for (int i = index; i < n; ++i)
{
if (used[i] == 0)
{
int j = i - 1;
bool repeated = false;
while (j >= 0 && nums[j] == nums[i])
{
if (used[j] == 0)
{
repeated = true;
break;
}
--j;
}
if (repeated)
continue;
cur.push_back(nums[i]);
used[i] = 1;
dfs(vct, cur, nums, used, i + 1);
used[i] = 0;
cur.pop_back();
}
}
}
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
vector<vector<int>> vct;
vector<int> cur;
int n = nums.size();
if (n <= 0)
return vct;
vector<int> used(n, 0);
sort(nums.begin(), nums.end());
dfs(vct, cur, nums,used,0);
return vct;
}
};
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。