Problem
Given an unsorted array of integers, find the length of longest increasing subsequence.
Example:
Input: [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Note:
There may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up:
Could you improve it to O(n log n) time complexity?
Solution
using Arrays.binarySearch(int[] array, int start, int end, int target)
class Solution {
public int lengthOfLIS(int[] nums) {
int len = 0;
//use Arrays.binarySearch() to find the right index of to-be-inserted number in dp[]
int[] dp = new int[nums.length];
for (int num: nums) {
int index = Arrays.binarySearch(dp, 0, len, num);
if (index < 0) {
//calculate the right index in dp[] and insert num
index = -index-1;
dp[index] = num;
}
//if last inserted index equals len, increase len by 1
//reason: index is 0-based, should always keep: len == index+1
if (index == len) len++;
}
}
}
Define a binary search method
class Solution {
public int lengthOfLIS(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int index = 0;
int[] dp = new int[nums.length];
dp[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
int pos = findPos(dp, nums[i], index);
if (pos > index) index = pos;
dp[pos] = nums[i];
}
return index+1;
}
private int findPos(int[] nums, int val, int index) {
int start = 0, end = index;
while (start+1 < end) {
int mid = start+(end-start)/2;
if (nums[mid] == val) return mid;
else if (nums[mid] < val) start = mid;
else end = mid;
}
if (nums[end] < val) return end+1;
else if (nums[start] < val) return end;
else return start;
}
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。