12
李成熙,腾讯云高级工程师。2014年度毕业加入腾讯AlloyTeam,先后负责过QQ群、花样直播、腾讯文档等项目。2018年加入腾讯云云开发团队。专注于性能优化、工程化和小程序服务。微博 | 知乎 | Github

概念回顾

在掘金开发者大会上,在推荐实践那里,我有提到一种云函数的用法,我们可以将相同的一些操作,比如用户管理、支付逻辑,按照业务的相似性,归类到一个云函数里,这样比较方便管理、排查问题以及逻辑的共享。甚至如果你的小程序的后台逻辑不复杂,请求量不是特别大,完全可以在云函数里面做一个单一的微服务,根据路由来处理任务。

用下面三幅图可以概括,我们来回顾一下:

比如这里就是传统的云函数用法,一个云函数处理一个任务,高度解耦。

第二幅架构图就是尝试将请求归类,一个云函数处理某一类的请求,比如有专门负责处理用户的,或者专门处理支付的云函数。

最后一幅图显示这里只有一个云函数,云函数里有一个分派任务的路由管理,将不同的任务分配给不同的本地函数处理。

tcb-router 介绍及用法

为了方便大家试用,咱们腾讯云 Tencent Cloud Base 团队开发了 tcb-router,云函数路由管理库方便大家使用。

那具体怎么使用 tcb-router 去实现上面提到的架构呢?下面我会逐一举例子。

架构一:一个云函数处理一个任务
这种架构下,其实不需要用到 tcb-router,像普通那样写好云函数,然后在小程序端调用就可以了。

  • 云函数
// 函数 router
exports.main = (event, context) => {
    return {
        code: 0,
        message: 'success'
    };
};
  • 小程序端
wx.cloud.callFunction({
      name: 'router',
      data: {
        name: 'tcb',
        company: 'Tencent'
      }
    }).then((res) => {
      console.log(res);
    }).catch((e) => {
      console.log(e);
});

架构二: 按请求给云函数归类
此类架构就是将相似的请求归类到同一个云函数处理,比如可以分为用户管理、支付等等的云函数。

  • 云函数
// 函数 user
const TcbRouter = require('tcb-router');

exports.main = async (event, context) => {
    const app = new TcbRouter({ event });
    
    app.router('register', async (ctx, next) => {
        await next();
    }, async (ctx, next) => {
        await next();
    }, async (ctx) => {
        ctx.body = {
            code: 0,
            message: 'register success'
        }
    });

    app.router('login', async (ctx, next) => {
        await next();
    }, async (ctx, next) => {
        await next();
    }, async (ctx) => {
        ctx.body = {
            code: 0,
            message: 'login success'
        }
    });

    return app.serve();
};

// 函数 pay
const TcbRouter = require('tcb-router');

exports.main = async (event, context) => {
    const app = new TcbRouter({ event });
    
    app.router('makeOrder', async (ctx, next) => {
        await next();
    }, async (ctx, next) => {
        await next();
    }, async (ctx) => {
        ctx.body = {
            code: 0,
            message: 'make order success'
        }
    });

    app.router('pay', async (ctx, next) => {
        await next();
    }, async (ctx, next) => {
        await next();
    }, async (ctx) => {
        ctx.body = {
            code: 0,
            message: 'pay success'
        }
    });

    return app.serve();
};
  • 小程序端
// 注册用户
wx.cloud.callFunction({
      name: 'user',
      data: {
        $url: 'register',
        name: 'tcb',
        password: '09876'
      }
    }).then((res) => {
      console.log(res);
    }).catch((e) => {
      console.log(e);
});

// 下单商品
wx.cloud.callFunction({
      name: 'pay',
      data: {
        $url: 'makeOrder',
        id: 'xxxx',
        amount: '3'
      }
    }).then((res) => {
      console.log(res);
    }).catch((e) => {
      console.log(e);
});

架构三: 由一个云函数处理所有服务

  • 云函数
// 函数 router
const TcbRouter = require('tcb-router');

exports.main = async (event, context) => {
    const app = new TcbRouter({ event });
    
    app.router('user/register', async (ctx, next) => {
        await next();
    }, async (ctx, next) => {
        await next();
    }, async (ctx) => {
        ctx.body = {
            code: 0,
            message: 'register success'
        }
    });

    app.router('user/login', async (ctx, next) => {
        await next();
    }, async (ctx, next) => {
        await next();
    }, async (ctx) => {
        ctx.body = {
            code: 0,
            message: 'login success'
        }
    });

    app.router('pay/makeOrder', async (ctx, next) => {
        await next();
    }, async (ctx, next) => {
        await next();
    }, async (ctx) => {
        ctx.body = {
            code: 0,
            message: 'make order success'
        }
    });

    app.router('pay/pay', async (ctx, next) => {
        await next();
    }, async (ctx, next) => {
        await next();
    }, async (ctx) => {
        ctx.body = {
            code: 0,
            message: 'pay success'
        }
    });

    return app.serve();
};
  • 小程序端
// 注册用户
wx.cloud.callFunction({
      name: 'router',
      data: {
        $url: 'user/register',
        name: 'tcb',
        password: '09876'
      }
    }).then((res) => {
      console.log(res);
    }).catch((e) => {
      console.log(e);
});

// 下单商品
wx.cloud.callFunction({
      name: 'router',
      data: {
        $url: 'pay/makeOrder',
        id: 'xxxx',
        amount: '3'
      }
    }).then((res) => {
      console.log(res);
    }).catch((e) => {
      console.log(e);
});

借鉴 Koa2 的中间件机制实现云函数的路由管理

小程序·云开发的云函数目前更推荐 async/await 的玩法来处理异步操作,因此这里也参考了同样是基于 async/await 的 Koa2 的中间件实现机制。

从上面的一些例子我们可以看出,主要是通过 userouter 两种方法传入路由以及相关处理的中间件。

use 只能传入一个中间件,路由也只能是字符串,通常用于 use 一些所有路由都得使用的中间件

// 不写路由表示该中间件应用于所有的路由
app.use(async (ctx, next) => {

});

app.use('router', async (ctx, next) => {

});

router 可以传一个或多个中间件,路由也可以传入一个或者多个。

app.router('router', async (ctx, next) => {

});

app.router(['router', 'timer'], async (ctx, next) => {
    await next();
}, async (ctx, next) => {
    await next();
}, async (ctx, next) => {

});

不过,无论是 use 还是 router,都只是将路由和中间件信息,通过 _addMiddleware_addRoute 两个方法,录入到 _routerMiddlewares 该对象中,用于后续调用 serve 的时候,层层去执行中间件。

最重要的运行中间件逻辑,则是在 servecompose 两个方法里。

serve 里主要的作用是做路由的匹配以及将中间件组合好之后,通过 compose 进行下一步的操作。比如以下这段节选的代码,其实是将匹配到的路由的中间件,以及 * 这个通配路由的中间件合并到一起,最后依次执行。

let middlewares = (_routerMiddlewares[url]) ? _routerMiddlewares[url].middlewares : [];
// put * path middlewares on the queue head
if (_routerMiddlewares['*']) {
    middlewares = [].concat(_routerMiddlewares['*'].middlewares, middlewares);
}

组合好中间件后,执行这一段,将中间件 compose 后并返回一个函数,传入上下文 this 后,最后将 this.body 的值 resolve,即一般在最后一个中间件里,通过对 ctx.body 的赋值,实现云函数的对小程序端的返回:

const fn = compose(middlewares);

return new Promise((resolve, reject) => {
    fn(this).then((res) => {
        resolve(this.body);
    }).catch(reject);
});

那么 compose 是怎么组合好这些中间件的呢?这里截取部份代码进行分析

function compose(middleware) {
    /**
     * ... 其它代码 
     */
    return function (context, next) {
        // 这里的 next,如果是在主流程里,一般 next 都是空。
        let index = -1;

        // 在这里开始处理处理第一个中间件
        return dispatch(0);

        // dispatch 是核心的方法,通过不断地调用 dispatch 来处理所有的中间件
        function dispatch(i) {
            if (i <= index) {
                return Promise.reject(new Error('next() called multiple times'));
            }

            index = i;

            // 获取中间件函数
            let handler = middleware[i];

            // 处理完最后一个中间件,返回 Proimse.resolve
            if (i === middleware.length) {
                handler = next;
            }

            if (!handler) {
                return Promise.resolve();
            }

            try {
                // 在这里不断地调用 dispatch, 同时增加 i 的数值处理中间件
                return Promise.resolve(handler(context, dispatch.bind(null, i + 1)));
            }
            catch (err) {
                return Promise.reject(err);
            }
        }
    }
}

看完这里的代码,其实有点疑惑,怎么通过 Promise.resolve(handler(xxxx)) 这样的代码逻辑可以推进中间件的调用呢?

首先,我们知道,handler 其实就是一个 async functionnext,就是 dispatch.bind(null, i + 1) 比如这个:

async (ctx, next) => {
    await next();
}

而我们知道,dispatch 是返回一个 Promise.resolve 或者一个 Promise.reject,因此在 async function 里执行 await next(),就相当于触发下一个中间件的调用。

compose 完成后,还是会返回一个 function (context, next),于是就走到下面这个逻辑,执行 fn 并传入上下文 this 后,再将在中间件中赋值的 this.body resolve 出来,最终就成为云函数数要返回的值。

const fn = compose(middlewares);

return new Promise((resolve, reject) => {
    fn(this).then((res) => {
        resolve(this.body);
    }).catch(reject);
});

看到 Promise.resolve 一个 async function,许多人都会很困惑。其实撇除 next 这个往下调用中间件的逻辑,我们可以很好地将逻辑简化成下面这段示例:

let a = async () => {
    console.log(1);
};

let b = async () => {
    console.log(2);

    return 3;
};


let fn = async () => {
    await a();
    return b();
};

Promise.resolve(fn()).then((res) => {
    console.log(res);
});

// 输出
// 1
// 2
// 3

lcxfs1991
918 声望254 粉丝