Problem
Given an unsorted array of integers, find the length of longest continuous increasing subsequence (subarray).
Example 1:
Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3.
Even though [1,3,5,7] is also an increasing subsequence, it's not a continuous one where 5 and 7 are separated by 4.
Example 2:
Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1.
Note: Length of the array will not exceed 10,000.
Solution #1 using index
class Solution {
public int findLengthOfLCIS(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int start = 0, max = 1, pre = nums[0];
for (int i = 1; i < nums.length; i++) {
if (nums[i] > pre) {
pre = nums[i];
max = Math.max(max, i-start+1);
} else {
pre = nums[i];
start = i;
}
}
return max;
}
}
Solution #2 using count
class Solution {
public int findLengthOfLCIS(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int count = 1, max = 1;
for (int i = 1; i < nums.length; i++) {
if (nums[i] > nums[i-1]) {
count++;
max = Math.max(max, count);
} else {
count = 1;
}
}
return max;
}
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。