依赖关系

LinkedList 继承于AbstractSequentialList的双向链表。它也可以被当作堆栈、队列或双端队列进行操作。
LinkedList 实现 List 接口,能对它进行队列操作。
LinkedList 实现 Deque 接口,即能将LinkedList当作双端队列使用。
LinkedList 实现了Cloneable接口,即覆盖了函数clone(),能克隆。
LinkedList 实现java.io.Serializable接口,这意味着LinkedList支持序列化,能通过序列化去传输。
LinkedList 是非同步的。

依赖关系图

java.lang.Object
   ↳     java.util.AbstractCollection<E>
         ↳     java.util.AbstractList<E>
               ↳     java.util.AbstractSequentialList<E>
                     ↳     java.util.LinkedList<E>

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable 

API

LinkedList api

属性

// 实际元素个数
transient int size = 0;
// 头节点
transient Node<E> first;
// 尾节点
transient Node<E> last;
//注意,头节点、尾节点都有transient关键字修饰,这也意味着在序列化时该域是不会序列化的。

内部类

内部类Node就是实际的节点,用于存放实际元素的地方

private static class Node<E> {
    E item; // 数据域
    Node<E> next; // 后继
    Node<E> prev; // 前驱
    
    // 构造函数,赋值前驱后继
    Node(Node<E> prev, E element, Node<E> next) {
        this.item = element;
        this.next = next;
        this.prev = prev;
    }
}

add(E e)添加元素到尾部

public boolean add(E e) {
    linkLast(e);
    return true;
}

void linkLast(E e) {
    //链表尾节点
    final Node<E> l = last;
    //以尾节点为前驱节点创建一个新节点
    final Node<E> newNode = new Node<>(l, e, null);
    //将链表尾节点指向新节点
    last = newNode;
    if (l == null)//如果链表为空,那么该节点既是头节点也是尾节点
        first = newNode;
    else//链表不为空,那么将该结点作为原链表尾部的后继节点
        l.next = newNode;
    size++;//增加尺寸
    modCount++;
}

add(E e)添加元素到尾部图解

图片描述

add(int index,E e)添加元素到指定位置

public void add(int index, E element) {
    checkPositionIndex(index); //检查索引是否处于[0-size]之间

    if (index == size)//添加在链表尾部
        linkLast(element);
    else//添加在链表中间
        linkBefore(element, node(index));
}

void linkBefore(E e, Node<E> succ) {
    // assert succ != null;
    final Node<E> pred = succ.prev;
    final Node<E> newNode = new Node<>(pred, e, succ);
    succ.prev = newNode;
    if (pred == null)
        first = newNode;
    else
        pred.next = newNode;
    size++;
    modCount++;
}

add(int index,E e)添加元素到指定位置图解

图片描述

addAll添加集合到指定位置图解

图片描述

删除和添加相反不做多余解释了。

总结

1、LinkedList 实际上是通过双向链表去实现的,增删效率高,索引效率低。它包含一个非常重要的内部类:Node。Node是双向链表节点所对应的数据结构,它包括的属性有:当前节点所包含的值,上一个节点,下一个节点。
2、从LinkedList的实现方式中可以发现,它不存在LinkedList容量不足的问题。
3、LinkedList实现java.io.Serializable。当写入到输出流时,先写入“容量”,再依次写入“每一个节点保护的值”;当读出输入流时,先读取“容量”,再依次读取“每一个元素”。
4、由于LinkedList实现了Deque,而Deque接口定义了在双端队列两端访问元素的方法。提供插入、移除和检查元素的方法。每种方法都存在两种形式:一种形式在操作失败时抛出异常,另一种形式返回一个特殊值(null 或 false,具体取决于操作)。

遍历效率对比实例

import java.util.List;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.NoSuchElementException;

/*
 * @desc 测试LinkedList的几种遍历方式和效率
 */
public class LinkedListThruTest {
    public static void main(String[] args) {
        // 通过Iterator遍历LinkedList
        iteratorLinkedListThruIterator(getLinkedList()) ;
        
        // 通过快速随机访问遍历LinkedList
        iteratorLinkedListThruForeach(getLinkedList()) ;

        // 通过for循环的变种来访问遍历LinkedList
        iteratorThroughFor2(getLinkedList()) ;

        // 通过PollFirst()遍历LinkedList
        iteratorThroughPollFirst(getLinkedList()) ;

        // 通过PollLast()遍历LinkedList
        iteratorThroughPollLast(getLinkedList()) ;

        // 通过removeFirst()遍历LinkedList
        iteratorThroughRemoveFirst(getLinkedList()) ;

        // 通过removeLast()遍历LinkedList
        iteratorThroughRemoveLast(getLinkedList()) ;
    }
    
    private static LinkedList getLinkedList() {
        LinkedList llist = new LinkedList();
        for (int i=0; i<100000; i++)
            llist.addLast(i);

        return llist;
    }
    /**
     * 通过快迭代器遍历LinkedList
     */
    private static void iteratorLinkedListThruIterator(LinkedList<Integer> list) {
        if (list == null)
            return ;

        // 记录开始时间
        long start = System.currentTimeMillis();
        
        for(Iterator iter = list.iterator(); iter.hasNext();)
            iter.next();

        // 记录结束时间
        long end = System.currentTimeMillis();
        long interval = end - start;
        System.out.println("iteratorLinkedListThruIterator:" + interval+" ms");
    }

    /**
     * 通过快速随机访问遍历LinkedList
     */
    private static void iteratorLinkedListThruForeach(LinkedList<Integer> list) {
        if (list == null)
            return ;

        // 记录开始时间
        long start = System.currentTimeMillis();
        
        int size = list.size();
        for (int i=0; i<size; i++) {
            list.get(i);        
        }
        // 记录结束时间
        long end = System.currentTimeMillis();
        long interval = end - start;
        System.out.println("iteratorLinkedListThruForeach:" + interval+" ms");
    }

    /**
     * 通过另外一种for循环来遍历LinkedList
     */
    private static void iteratorThroughFor2(LinkedList<Integer> list) {
        if (list == null)
            return ;

        // 记录开始时间
        long start = System.currentTimeMillis();
        
        for (Integer integ:list) 
            ;

        // 记录结束时间
        long end = System.currentTimeMillis();
        long interval = end - start;
        System.out.println("iteratorThroughFor2:" + interval+" ms");
    }

    /**
     * 通过pollFirst()来遍历LinkedList
     */
    private static void iteratorThroughPollFirst(LinkedList<Integer> list) {
        if (list == null)
            return ;

        // 记录开始时间
        long start = System.currentTimeMillis();
        while(list.pollFirst() != null)
            ;

        // 记录结束时间
        long end = System.currentTimeMillis();
        long interval = end - start;
        System.out.println("iteratorThroughPollFirst:" + interval+" ms");
    }

    /**
     * 通过pollLast()来遍历LinkedList
     */
    private static void iteratorThroughPollLast(LinkedList<Integer> list) {
        if (list == null)
            return ;

        // 记录开始时间
        long start = System.currentTimeMillis();
        while(list.pollLast() != null)
            ;

        // 记录结束时间
        long end = System.currentTimeMillis();
        long interval = end - start;
        System.out.println("iteratorThroughPollLast:" + interval+" ms");
    }

    /**
     * 通过removeFirst()来遍历LinkedList
     */
    private static void iteratorThroughRemoveFirst(LinkedList<Integer> list) {
        if (list == null)
            return ;

        // 记录开始时间
        long start = System.currentTimeMillis();
        try {
            while(list.removeFirst() != null)
                ;
        } catch (NoSuchElementException e) {
        }

        // 记录结束时间
        long end = System.currentTimeMillis();
        long interval = end - start;
        System.out.println("iteratorThroughRemoveFirst:" + interval+" ms");
    }

    /**
     * 通过removeLast()来遍历LinkedList
     */
    private static void iteratorThroughRemoveLast(LinkedList<Integer> list) {
        if (list == null)
            return ;

        // 记录开始时间
        long start = System.currentTimeMillis();
        try {
            while(list.removeLast() != null)
                ;
        } catch (NoSuchElementException e) {
        }

        // 记录结束时间
        long end = System.currentTimeMillis();
        long interval = end - start;
        System.out.println("iteratorThroughRemoveLast:" + interval+" ms");
    }

}

输出结果

iteratorLinkedListThruIterator:8 ms
iteratorLinkedListThruForeach:3724 ms
iteratorThroughFor2:5 ms
iteratorThroughPollFirst:8 ms
iteratorThroughPollLast:6 ms
iteratorThroughRemoveFirst:2 ms
iteratorThroughRemoveLast:2 ms

由此可见,遍历LinkedList时,使用removeFist()或removeLast()效率最高。但用它们遍历时,会删除原始数据;若单纯只读取,而不删除,应该使用第3种遍历方式。
无论如何,千万不要通过随机访问去遍历LinkedList!


315574925
131 声望25 粉丝