Problem
In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum.
Each subarray will be of size k, and we want to maximize the sum of all 3*k entries.
Return the result as a list of indices representing the starting position of each interval (0-indexed). If there are multiple answers, return the lexicographically smallest one.
Example:
Input: [1,2,1,2,6,7,5,1], 2
Output: [0, 3, 5]
Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5].
We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically larger.
Note:
nums.length will be between 1 and 20000.
nums[i] will be between 1 and 65535.
k will be between 1 and floor(nums.length / 3).
Solution
class Solution {
public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
//three parts: 0 ~ i-1, i ~ i+k-1, i+k ~ n-1 (i >= k)
// (n-1) - (i+k) + 1 >= k ... so (i <= n-2k)
if (nums == null || nums.length < 3*k) return null;
int n = nums.length;
int[] sum = new int[n+1];
int[] left = new int[n];
int[] right = new int[n];
int[] res = new int[3];
int max = 0;
for (int i = 0; i < n; i++) {
sum[i+1] = sum[i] + nums[i];
}
int leftMax = sum[k]-sum[0];
left[k-1] = 0;
for (int i = k; i < n; i++) {
if (sum[i+1]-sum[i+1-k] > leftMax) {
left[i] = i+1-k;
leftMax = sum[i+1]-sum[i+1-k];
} else {
left[i] = left[i-1];
}
}
int rightMax = sum[n]-sum[n-k];
right[n-k] = n-k;
for (int i = n-1-k; i >= 0; i--) {
if (sum[i+k]-sum[i] > rightMax) {
right[i] = i;
rightMax = sum[i+k]-sum[i];
} else {
right[i] = right[i+1];
}
}
for (int i = k; i <= n-2*k; i++) {
int l = left[i-1];
int r = right[i+k];
int curMax = sum[l+k]-sum[l] + (sum[i+k]-sum[i]) + (sum[r+k]-sum[r]);
if (curMax > max) {
max = curMax;
res[0] = l;
res[1] = i;
res[2] = r;
}
}
return res;
}
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。