序
本文主要研究一下storm的LoggingClusterMetricsConsumer
LoggingClusterMetricsConsumer
storm-2.0.0/storm-server/src/main/java/org/apache/storm/metric/LoggingClusterMetricsConsumer.java
public class LoggingClusterMetricsConsumer implements IClusterMetricsConsumer {
public static final Logger LOG = LoggerFactory.getLogger(LoggingClusterMetricsConsumer.class);
static private String padding = " ";
@Override
public void prepare(Object registrationArgument) {
}
@Override
public void handleDataPoints(ClusterInfo clusterInfo, Collection<DataPoint> dataPoints) {
StringBuilder sb = new StringBuilder();
String header = String.format("%d\t%15s\t%40s\t",
clusterInfo.getTimestamp(), "<cluster>", "<cluster>");
sb.append(header);
logDataPoints(dataPoints, sb, header);
}
@Override
public void handleDataPoints(SupervisorInfo supervisorInfo, Collection<DataPoint> dataPoints) {
StringBuilder sb = new StringBuilder();
String header = String.format("%d\t%15s\t%40s\t",
supervisorInfo.getTimestamp(),
supervisorInfo.getSrcSupervisorHost(),
supervisorInfo.getSrcSupervisorId());
sb.append(header);
for (DataPoint p : dataPoints) {
sb.delete(header.length(), sb.length());
sb.append(p.getName())
.append(padding).delete(header.length() + 23, sb.length()).append("\t")
.append(p.getValue());
LOG.info(sb.toString());
}
}
@Override
public void cleanup() {
}
private void logDataPoints(Collection<DataPoint> dataPoints, StringBuilder sb, String header) {
for (DataPoint p : dataPoints) {
sb.delete(header.length(), sb.length());
sb.append(p.getName())
.append(padding).delete(header.length() + 23, sb.length()).append("\t")
.append(p.getValue());
LOG.info(sb.toString());
}
}
}
- 这个是cluster级别的metrics consumer,只能在storm.yaml里头配置
- 它的handleDataPoints供ClusterMetricsConsumerExecutor回调
- 这里handleDataPoints仅仅是打印到日志文件
storm.yaml配置
## Cluster Metrics Consumers
storm.cluster.metrics.consumer.register:
- class: "org.apache.storm.metric.LoggingClusterMetricsConsumer"
# - class: "com.example.demo.metric.FixedLoggingClusterMetricsConsumer"
# argument:
# - endpoint: "metrics-collector.mycompany.org"
#
storm.cluster.metrics.consumer.publish.interval.secs: 5
- 这里指定了consumer类为LoggingClusterMetricsConsumer,同时指定了publish interval为5秒
cluster.xml
<?xml version="1.0" encoding="UTF-8"?>
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<configuration monitorInterval="60" shutdownHook="disable" packages="org.apache.logging.log4j.core,io.sentry.log4j2">
<properties>
<property name="pattern">%d{yyyy-MM-dd HH:mm:ss.SSS} %c{1.} %t [%p] %msg%n</property>
<property name="patternMetrics">%d %-8r %m%n</property>
</properties>
<appenders>
<RollingFile name="A1" immediateFlush="false"
fileName="${sys:storm.log.dir}/${sys:logfile.name}"
filePattern="${sys:storm.log.dir}/${sys:logfile.name}.%i.gz">
<PatternLayout>
<pattern>${pattern}</pattern>
</PatternLayout>
<Policies>
<SizeBasedTriggeringPolicy size="100 MB"/> <!-- Or every 100 MB -->
</Policies>
<DefaultRolloverStrategy max="9"/>
</RollingFile>
<RollingFile name="WEB-ACCESS" immediateFlush="false"
fileName="${sys:storm.log.dir}/access-web-${sys:daemon.name}.log"
filePattern="${sys:storm.log.dir}/access-web-${sys:daemon.name}.log.%i.gz">
<PatternLayout>
<pattern>${pattern}</pattern>
</PatternLayout>
<Policies>
<SizeBasedTriggeringPolicy size="100 MB"/> <!-- Or every 100 MB -->
</Policies>
<DefaultRolloverStrategy max="9"/>
</RollingFile>
<RollingFile name="THRIFT-ACCESS" immediateFlush="false"
fileName="${sys:storm.log.dir}/access-${sys:logfile.name}"
filePattern="${sys:storm.log.dir}/access-${sys:logfile.name}.%i.gz">
<PatternLayout>
<pattern>${pattern}</pattern>
</PatternLayout>
<Policies>
<SizeBasedTriggeringPolicy size="100 MB"/> <!-- Or every 100 MB -->
</Policies>
<DefaultRolloverStrategy max="9"/>
</RollingFile>
<RollingFile name="METRICS"
fileName="${sys:storm.log.dir}/${sys:logfile.name}.metrics"
filePattern="${sys:storm.log.dir}/${sys:logfile.name}.metrics.%i.gz">
<PatternLayout>
<pattern>${patternMetrics}</pattern>
</PatternLayout>
<Policies>
<SizeBasedTriggeringPolicy size="2 MB"/>
</Policies>
<DefaultRolloverStrategy max="9"/>
</RollingFile>
<Syslog name="syslog" format="RFC5424" charset="UTF-8" host="localhost" port="514"
protocol="UDP" appName="[${sys:daemon.name}]" mdcId="mdc" includeMDC="true"
facility="LOCAL5" enterpriseNumber="18060" newLine="true" exceptionPattern="%rEx{full}"
messageId="[${sys:user.name}:S0]" id="storm" immediateFlush="true" immediateFail="true"/>
</appenders>
<loggers>
<Logger name="org.apache.storm.logging.filters.AccessLoggingFilter" level="info" additivity="false">
<AppenderRef ref="WEB-ACCESS"/>
<AppenderRef ref="syslog"/>
</Logger>
<Logger name="org.apache.storm.logging.ThriftAccessLogger" level="info" additivity="false">
<AppenderRef ref="THRIFT-ACCESS"/>
<AppenderRef ref="syslog"/>
</Logger>
<Logger name="org.apache.storm.metric.LoggingClusterMetricsConsumer" level="info" additivity="false">
<appender-ref ref="METRICS"/>
</Logger>
<root level="info"> <!-- We log everything -->
<appender-ref ref="A1"/>
<appender-ref ref="syslog"/>
<appender-ref ref="Sentry" level="ERROR" />
</root>
</loggers>
</configuration>
- cluster.xml指定了metrics logging的相关配置,这里使用的是METRICS appender,该appender是一个RollingFile,文件名为${sys:storm.log.dir}/${sys:logfile.name}.metrics,例如nimbus默认的logfile.name为nimbus.log,supervisor默认的logfile.name为supervisor.log,因而写入的文件为nimbus.log.metrics及supervisor.log.metrics
日志输出实例
2018-11-06 07:51:51,488 18628 1541490711 <cluster> <cluster> supervisors 1
2018-11-06 07:51:51,488 18628 1541490711 <cluster> <cluster> topologies 0
2018-11-06 07:51:51,489 18629 1541490711 <cluster> <cluster> slotsTotal 4
2018-11-06 07:51:51,489 18629 1541490711 <cluster> <cluster> slotsUsed 0
2018-11-06 07:51:51,489 18629 1541490711 <cluster> <cluster> slotsFree 4
2018-11-06 07:51:51,489 18629 1541490711 <cluster> <cluster> executorsTotal 0
2018-11-06 07:51:51,489 18629 1541490711 <cluster> <cluster> tasksTotal 0
2018-11-06 07:51:51,496 18636 1541490711 192.168.99.100 5bbd576d-218c-4365-ac5e-865b1f6e9b29 slotsTotal 4
2018-11-06 07:51:51,497 18637 1541490711 192.168.99.100 5bbd576d-218c-4365-ac5e-865b1f6e9b29 slotsUsed 0
2018-11-06 07:51:51,497 18637 1541490711 192.168.99.100 5bbd576d-218c-4365-ac5e-865b1f6e9b29 totalMem 3072.0
2018-11-06 07:51:51,497 18637 1541490711 192.168.99.100 5bbd576d-218c-4365-ac5e-865b1f6e9b29 totalCpu 400.0
2018-11-06 07:51:51,498 18638 1541490711 192.168.99.100 5bbd576d-218c-4365-ac5e-865b1f6e9b29 usedMem 0.0
2018-11-06 07:51:51,498 18638 1541490711 192.168.99.100 5bbd576d-218c-4365-ac5e-865b1f6e9b29 usedCpu 0.0
ClusterMetricsConsumerExecutor
storm-2.0.0/storm-server/src/main/java/org/apache/storm/metric/ClusterMetricsConsumerExecutor.java
public class ClusterMetricsConsumerExecutor {
public static final Logger LOG = LoggerFactory.getLogger(ClusterMetricsConsumerExecutor.class);
private static final String ERROR_MESSAGE_PREPARATION_CLUSTER_METRICS_CONSUMER_FAILED =
"Preparation of Cluster Metrics Consumer failed. " +
"Please check your configuration and/or corresponding systems and relaunch Nimbus. " +
"Skipping handle metrics.";
private IClusterMetricsConsumer metricsConsumer;
private String consumerClassName;
private Object registrationArgument;
public ClusterMetricsConsumerExecutor(String consumerClassName, Object registrationArgument) {
this.consumerClassName = consumerClassName;
this.registrationArgument = registrationArgument;
}
public void prepare() {
try {
metricsConsumer = (IClusterMetricsConsumer) Class.forName(consumerClassName).newInstance();
metricsConsumer.prepare(registrationArgument);
} catch (Exception e) {
LOG.error("Could not instantiate or prepare Cluster Metrics Consumer with fully qualified name " +
consumerClassName, e);
if (metricsConsumer != null) {
metricsConsumer.cleanup();
}
metricsConsumer = null;
}
}
public void handleDataPoints(final IClusterMetricsConsumer.ClusterInfo clusterInfo, final Collection<DataPoint> dataPoints) {
if (metricsConsumer == null) {
LOG.error(ERROR_MESSAGE_PREPARATION_CLUSTER_METRICS_CONSUMER_FAILED);
return;
}
try {
metricsConsumer.handleDataPoints(clusterInfo, dataPoints);
} catch (Throwable e) {
LOG.error("Error while handling cluster data points, consumer class: " + consumerClassName, e);
}
}
public void handleDataPoints(final IClusterMetricsConsumer.SupervisorInfo supervisorInfo, final Collection<DataPoint> dataPoints) {
if (metricsConsumer == null) {
LOG.error(ERROR_MESSAGE_PREPARATION_CLUSTER_METRICS_CONSUMER_FAILED);
return;
}
try {
metricsConsumer.handleDataPoints(supervisorInfo, dataPoints);
} catch (Throwable e) {
LOG.error("Error while handling cluster data points, consumer class: " + consumerClassName, e);
}
}
public void cleanup() {
if (metricsConsumer != null) {
metricsConsumer.cleanup();
}
}
}
- ClusterMetricsConsumerExecutor在prepare的时候,根据consumerClassName来实例化IClusterMetricsConsumer的实现类,之后传入调用metricsConsumer.prepare(registrationArgument)做些准备
- ClusterMetricsConsumerExecutor的handleDataPoints方法实际上是代理了metricsConsumer的handleDataPoints
- 该handleDataPoints方法有两个,他们都有共同的参数dataPoints,另外一个不同的参数,是一个传的是ClusterInfo,一个是SupervisorInfo,分别用于nimbus及supervisor
Nimbus.launchServer
storm-2.0.0/storm-server/src/main/java/org/apache/storm/daemon/nimbus/Nimbus.java
public void launchServer() throws Exception {
try {
BlobStore store = blobStore;
IStormClusterState state = stormClusterState;
NimbusInfo hpi = nimbusHostPortInfo;
LOG.info("Starting Nimbus with conf {}", ConfigUtils.maskPasswords(conf));
validator.prepare(conf);
//......
timer.scheduleRecurring(0, ObjectReader.getInt(conf.get(DaemonConfig.STORM_CLUSTER_METRICS_CONSUMER_PUBLISH_INTERVAL_SECS)),
() -> {
try {
if (isLeader()) {
sendClusterMetricsToExecutors();
}
} catch (Exception e) {
throw new RuntimeException(e);
}
});
timer.scheduleRecurring(5, 5, clusterMetricSet);
} catch (Exception e) {
if (Utils.exceptionCauseIsInstanceOf(InterruptedException.class, e)) {
throw e;
}
if (Utils.exceptionCauseIsInstanceOf(InterruptedIOException.class, e)) {
throw e;
}
LOG.error("Error on initialization of nimbus", e);
Utils.exitProcess(13, "Error on initialization of nimbus");
}
}
private boolean isLeader() throws Exception {
return leaderElector.isLeader();
}
- Nimbus的launchServer方法创建了一个定时任务,如果是leader节点,则调用sendClusterMetricsToExecutors方法发送相关metrics到metrics consumer
- 定时任务的调度时间间隔为DaemonConfig.STORM_CLUSTER_METRICS_CONSUMER_PUBLISH_INTERVAL_SECS(
storm.cluster.metrics.consumer.publish.interval.secs
),在defaults.yaml文件中默认为60,也可以自己在storm.yaml中自己指定 - 除了发送metrics到metrics consumer,它还有一个定时任务,每隔5秒调用一下ClusterSummaryMetricSet这个线程
Nimbus.sendClusterMetricsToExecutors
storm-2.0.0/storm-server/src/main/java/org/apache/storm/daemon/nimbus/Nimbus.java
private void sendClusterMetricsToExecutors() throws Exception {
ClusterInfo clusterInfo = mkClusterInfo();
ClusterSummary clusterSummary = getClusterInfoImpl();
List<DataPoint> clusterMetrics = extractClusterMetrics(clusterSummary);
Map<IClusterMetricsConsumer.SupervisorInfo, List<DataPoint>> supervisorMetrics = extractSupervisorMetrics(clusterSummary);
for (ClusterMetricsConsumerExecutor consumerExecutor : clusterConsumerExceutors) {
consumerExecutor.handleDataPoints(clusterInfo, clusterMetrics);
for (Entry<IClusterMetricsConsumer.SupervisorInfo, List<DataPoint>> entry : supervisorMetrics.entrySet()) {
consumerExecutor.handleDataPoints(entry.getKey(), entry.getValue());
}
}
}
- nimbus的sendClusterMetricsToExecutors方法通过extractClusterMetrics及extractSupervisorMetrics提取相关metrics,然后调用consumerExecutor.handleDataPoints传递数据
ClusterSummaryMetricSet
storm-2.0.0/storm-server/src/main/java/org/apache/storm/daemon/nimbus/Nimbus.java
private class ClusterSummaryMetricSet implements Runnable {
private static final int CACHING_WINDOW = 5;
private final ClusterSummaryMetrics clusterSummaryMetrics = new ClusterSummaryMetrics();
private final Function<String, Histogram> registerHistogram = (name) -> {
//This histogram reflects the data distribution across only one ClusterSummary, i.e.,
// data distribution across all entities of a type (e.g., data from all nimbus/topologies) at one moment.
// Hence we use half of the CACHING_WINDOW time to ensure it retains only data from the most recent update
final Histogram histogram = new Histogram(new SlidingTimeWindowReservoir(CACHING_WINDOW / 2, TimeUnit.SECONDS));
clusterSummaryMetrics.put(name, histogram);
return histogram;
};
private volatile boolean active = false;
//NImbus metrics distribution
private final Histogram nimbusUptime = registerHistogram.apply("nimbuses:uptime-secs");
//Supervisor metrics distribution
private final Histogram supervisorsUptime = registerHistogram.apply("supervisors:uptime-secs");
private final Histogram supervisorsNumWorkers = registerHistogram.apply("supervisors:num-workers");
private final Histogram supervisorsNumUsedWorkers = registerHistogram.apply("supervisors:num-used-workers");
private final Histogram supervisorsUsedMem = registerHistogram.apply("supervisors:used-mem");
private final Histogram supervisorsUsedCpu = registerHistogram.apply("supervisors:used-cpu");
private final Histogram supervisorsFragmentedMem = registerHistogram.apply("supervisors:fragmented-mem");
private final Histogram supervisorsFragmentedCpu = registerHistogram.apply("supervisors:fragmented-cpu");
//Topology metrics distribution
private final Histogram topologiesNumTasks = registerHistogram.apply("topologies:num-tasks");
private final Histogram topologiesNumExecutors = registerHistogram.apply("topologies:num-executors");
private final Histogram topologiesNumWorker = registerHistogram.apply("topologies:num-workers");
private final Histogram topologiesUptime = registerHistogram.apply("topologies:uptime-secs");
private final Histogram topologiesReplicationCount = registerHistogram.apply("topologies:replication-count");
private final Histogram topologiesRequestedMemOnHeap = registerHistogram.apply("topologies:requested-mem-on-heap");
private final Histogram topologiesRequestedMemOffHeap = registerHistogram.apply("topologies:requested-mem-off-heap");
private final Histogram topologiesRequestedCpu = registerHistogram.apply("topologies:requested-cpu");
private final Histogram topologiesAssignedMemOnHeap = registerHistogram.apply("topologies:assigned-mem-on-heap");
private final Histogram topologiesAssignedMemOffHeap = registerHistogram.apply("topologies:assigned-mem-off-heap");
private final Histogram topologiesAssignedCpu = registerHistogram.apply("topologies:assigned-cpu");
private final StormMetricsRegistry metricsRegistry;
/**
* Constructor to put all items in ClusterSummary in MetricSet as a metric.
* All metrics are derived from a cached ClusterSummary object,
* expired {@link ClusterSummaryMetricSet#CACHING_WINDOW} seconds after first query in a while from reporters.
* In case of {@link com.codahale.metrics.ScheduledReporter}, CACHING_WINDOW should be set shorter than
* reporting interval to avoid outdated reporting.
*/
ClusterSummaryMetricSet(StormMetricsRegistry metricsRegistry) {
this.metricsRegistry = metricsRegistry;
//Break the code if out of sync to thrift protocol
assert ClusterSummary._Fields.values().length == 3
&& ClusterSummary._Fields.findByName("supervisors") == ClusterSummary._Fields.SUPERVISORS
&& ClusterSummary._Fields.findByName("topologies") == ClusterSummary._Fields.TOPOLOGIES
&& ClusterSummary._Fields.findByName("nimbuses") == ClusterSummary._Fields.NIMBUSES;
final CachedGauge<ClusterSummary> cachedSummary = new CachedGauge<ClusterSummary>(CACHING_WINDOW, TimeUnit.SECONDS) {
@Override
protected ClusterSummary loadValue() {
try {
ClusterSummary newSummary = getClusterInfoImpl();
LOG.debug("The new summary is {}", newSummary);
/*
* Update histograms based on the new summary. Most common implementation of Reporter reports Gauges before
* Histograms. Because DerivativeGauge will trigger cache refresh upon reporter's query, histogram will also be
* updated before query
*/
updateHistogram(newSummary);
return newSummary;
} catch (Exception e) {
LOG.warn("Get cluster info exception.", e);
throw new RuntimeException(e);
}
}
};
clusterSummaryMetrics.put("cluster:num-nimbus-leaders", new DerivativeGauge<ClusterSummary, Long>(cachedSummary) {
@Override
protected Long transform(ClusterSummary clusterSummary) {
return clusterSummary.get_nimbuses().stream()
.filter(NimbusSummary::is_isLeader)
.count();
}
});
clusterSummaryMetrics.put("cluster:num-nimbuses", new DerivativeGauge<ClusterSummary, Integer>(cachedSummary) {
@Override
protected Integer transform(ClusterSummary clusterSummary) {
return clusterSummary.get_nimbuses_size();
}
});
clusterSummaryMetrics.put("cluster:num-supervisors", new DerivativeGauge<ClusterSummary, Integer>(cachedSummary) {
@Override
protected Integer transform(ClusterSummary clusterSummary) {
return clusterSummary.get_supervisors_size();
}
});
clusterSummaryMetrics.put("cluster:num-topologies", new DerivativeGauge<ClusterSummary, Integer>(cachedSummary) {
@Override
protected Integer transform(ClusterSummary clusterSummary) {
return clusterSummary.get_topologies_size();
}
});
clusterSummaryMetrics.put("cluster:num-total-workers", new DerivativeGauge<ClusterSummary, Integer>(cachedSummary) {
@Override
protected Integer transform(ClusterSummary clusterSummary) {
return clusterSummary.get_supervisors().stream()
.mapToInt(SupervisorSummary::get_num_workers)
.sum();
}
});
clusterSummaryMetrics.put("cluster:num-total-used-workers", new DerivativeGauge<ClusterSummary, Integer>(cachedSummary) {
@Override
protected Integer transform(ClusterSummary clusterSummary) {
return clusterSummary.get_supervisors().stream()
.mapToInt(SupervisorSummary::get_num_used_workers)
.sum();
}
});
clusterSummaryMetrics.put("cluster:total-fragmented-memory-non-negative", new DerivativeGauge<ClusterSummary, Double>(cachedSummary) {
@Override
protected Double transform(ClusterSummary clusterSummary) {
return clusterSummary.get_supervisors().stream()
//Filtered negative value
.mapToDouble(supervisorSummary -> Math.max(supervisorSummary.get_fragmented_mem(), 0))
.sum();
}
});
clusterSummaryMetrics.put("cluster:total-fragmented-cpu-non-negative", new DerivativeGauge<ClusterSummary, Double>(cachedSummary) {
@Override
protected Double transform(ClusterSummary clusterSummary) {
return clusterSummary.get_supervisors().stream()
//Filtered negative value
.mapToDouble(supervisorSummary -> Math.max(supervisorSummary.get_fragmented_cpu(), 0))
.sum();
}
});
}
private void updateHistogram(ClusterSummary newSummary) {
for (NimbusSummary nimbusSummary : newSummary.get_nimbuses()) {
nimbusUptime.update(nimbusSummary.get_uptime_secs());
}
for (SupervisorSummary summary : newSummary.get_supervisors()) {
supervisorsUptime.update(summary.get_uptime_secs());
supervisorsNumWorkers.update(summary.get_num_workers());
supervisorsNumUsedWorkers.update(summary.get_num_used_workers());
supervisorsUsedMem.update(Math.round(summary.get_used_mem()));
supervisorsUsedCpu.update(Math.round(summary.get_used_cpu()));
supervisorsFragmentedMem.update(Math.round(summary.get_fragmented_mem()));
supervisorsFragmentedCpu.update(Math.round(summary.get_fragmented_cpu()));
}
for (TopologySummary summary : newSummary.get_topologies()) {
topologiesNumTasks.update(summary.get_num_tasks());
topologiesNumExecutors.update(summary.get_num_executors());
topologiesNumWorker.update(summary.get_num_workers());
topologiesUptime.update(summary.get_uptime_secs());
topologiesReplicationCount.update(summary.get_replication_count());
topologiesRequestedMemOnHeap.update(Math.round(summary.get_requested_memonheap()));
topologiesRequestedMemOffHeap.update(Math.round(summary.get_requested_memoffheap()));
topologiesRequestedCpu.update(Math.round(summary.get_requested_cpu()));
topologiesAssignedMemOnHeap.update(Math.round(summary.get_assigned_memonheap()));
topologiesAssignedMemOffHeap.update(Math.round(summary.get_assigned_memoffheap()));
topologiesAssignedCpu.update(Math.round(summary.get_assigned_cpu()));
}
}
void setActive(final boolean active) {
if (this.active != active) {
this.active = active;
if (active) {
metricsRegistry.registerAll(clusterSummaryMetrics);
} else {
metricsRegistry.removeAll(clusterSummaryMetrics);
}
}
}
@Override
public void run() {
try {
setActive(isLeader());
} catch (Exception e) {
throw new RuntimeException(e);
}
}
}
- 这个线程主要是调用setActive方法,做的工作的话,就是不断判断节点状态变化,如果leader发生变化,自己是leader则注册clusterSummaryMetrics,如果自己变成不是leader则删除掉clusterSummaryMetrics
- clusterSummaryMetrics添加了cluster:num-nimbus-leaders、cluster:num-nimbuses、cluster:num-supervisors、cluster:num-topologies、cluster:num-total-workers、cluster:num-total-used-workers、cluster:total-fragmented-memory-non-negative、cluster:total-fragmented-cpu-non-negative这几个指标
小结
- LoggingClusterMetricsConsumer消费的是cluster级别的指标,它消费了指标数据,然后打印到日志文件,log4j2的配置读取的是cluster.xml,最后写入的文件是nimbus.log.metrics、supervisor.log.metrics;而LoggingMetricsConsumer是topology的worker级别的,log4j2的配置读取的是worker.xml,最后写入的文件是worker.log.metrics
- Nimbus在launchServer的时候,会建立一个定时任务,在当前节点是leader的情况下,定时发送metrics指标到ClusterMetricsConsumerExecutor,然后间接回调LoggingClusterMetricsConsumer的handleDataPoints方法,把数据打印到日志;LoggingMetricsConsumer采取的是在Executor设置定时任务来发射metricsTickTuple,触发SpoutExecutor以及BoltExecutor发送指标到topology内置的MetricsConsumerBolt,然后MetricsConsumerBolt回调LoggingMetricsConsumer.handleDataPoints方法来消费数据,把数据打印到日志
- handleDataPoints处理两类info,一类是ClusterInfo,一类是SupervisorInfo;这里要注意一下定时任务是在当前节点是leader的情况下才会sendClusterMetricsToExecutors的,正常情况nimbus与supervisor不在同一个节点上,因而supervisor.log.metrics可能是空的
- LoggingMetricsConsumer的实现依赖旧版的IMetric,而LoggingClusterMetricsConsumer则不依赖IMetric,它是从IStormClusterState中获取的指标
- storm 1.2版本引入了基于Dropwizard Metrics的新的指标系统,TopologyContext中返回IMetric的registerMetric在1.2版本已经被标记为Deprecated,因而LoggingMetricsConsumer后续可能需要改造为基于metrics2的MetricRegistry来获取指标
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。