本文主要研究一下storm的ICommitterTridentSpout

ICommitterTridentSpout

storm-core-1.2.2-sources.jar!/org/apache/storm/trident/spout/ICommitterTridentSpout.java

public interface ICommitterTridentSpout<X> extends ITridentSpout<X> {
    public interface Emitter extends ITridentSpout.Emitter {
        void commit(TransactionAttempt attempt);
    } 
    
    @Override
    public Emitter getEmitter(String txStateId, Map conf, TopologyContext context);    
}
  • ICommitterTridentSpout继承了ITridentSpout,主要是对getEmitter方法进行覆盖,返回扩展的Emitter,它继承ITridentSpout.Emitter ,多定义了一个commit接口

TridentTopologyBuilder.buildTopology

storm-core-1.2.2-sources.jar!/org/apache/storm/trident/topology/TridentTopologyBuilder.java

   public StormTopology buildTopology(Map<String, Number> masterCoordResources) {
        TopologyBuilder builder = new TopologyBuilder();
        Map<GlobalStreamId, String> batchIdsForSpouts = fleshOutStreamBatchIds(false);
        Map<GlobalStreamId, String> batchIdsForBolts = fleshOutStreamBatchIds(true);

        Map<String, List<String>> batchesToCommitIds = new HashMap<>();
        Map<String, List<ITridentSpout>> batchesToSpouts = new HashMap<>();
        
        for(String id: _spouts.keySet()) {
            TransactionalSpoutComponent c = _spouts.get(id);
            if(c.spout instanceof IRichSpout) {
                
                //TODO: wrap this to set the stream name
                builder.setSpout(id, (IRichSpout) c.spout, c.parallelism);
            } else {
                String batchGroup = c.batchGroupId;
                if(!batchesToCommitIds.containsKey(batchGroup)) {
                    batchesToCommitIds.put(batchGroup, new ArrayList<String>());
                }
                batchesToCommitIds.get(batchGroup).add(c.commitStateId);

                if(!batchesToSpouts.containsKey(batchGroup)) {
                    batchesToSpouts.put(batchGroup, new ArrayList<ITridentSpout>());
                }
                batchesToSpouts.get(batchGroup).add((ITridentSpout) c.spout);
                
                
                BoltDeclarer scd =
                      builder.setBolt(spoutCoordinator(id), new TridentSpoutCoordinator(c.commitStateId, (ITridentSpout) c.spout))
                        .globalGrouping(masterCoordinator(c.batchGroupId), MasterBatchCoordinator.BATCH_STREAM_ID)
                        .globalGrouping(masterCoordinator(c.batchGroupId), MasterBatchCoordinator.SUCCESS_STREAM_ID);
                
                for(Map<String, Object> m: c.componentConfs) {
                    scd.addConfigurations(m);
                }
                
                Map<String, TridentBoltExecutor.CoordSpec> specs = new HashMap();
                specs.put(c.batchGroupId, new CoordSpec());
                BoltDeclarer bd = builder.setBolt(id,
                        new TridentBoltExecutor(
                          new TridentSpoutExecutor(
                            c.commitStateId,
                            c.streamName,
                            ((ITridentSpout) c.spout)),
                            batchIdsForSpouts,
                            specs),
                        c.parallelism);
                bd.allGrouping(spoutCoordinator(id), MasterBatchCoordinator.BATCH_STREAM_ID);
                bd.allGrouping(masterCoordinator(batchGroup), MasterBatchCoordinator.SUCCESS_STREAM_ID);
                if(c.spout instanceof ICommitterTridentSpout) {
                    bd.allGrouping(masterCoordinator(batchGroup), MasterBatchCoordinator.COMMIT_STREAM_ID);
                }
                for(Map<String, Object> m: c.componentConfs) {
                    bd.addConfigurations(m);
                }
            }
        }
        
        //......

        return builder.createTopology();
    }
  • TridentTopologyBuilder.buildTopology的时候,对用户的spout判断,如果是ICommitterTridentSpout类型的,则会配置allGrouping(masterCoordinator(batchGroup), MasterBatchCoordinator.COMMIT_STREAM_ID)

MasterBatchCoordinator

storm-core-1.2.2-sources.jar!/org/apache/storm/trident/topology/MasterBatchCoordinator.java

    @Override
    public void nextTuple() {
        sync();
    }

    private void sync() {
        // note that sometimes the tuples active may be less than max_spout_pending, e.g.
        // max_spout_pending = 3
        // tx 1, 2, 3 active, tx 2 is acked. there won't be a commit for tx 2 (because tx 1 isn't committed yet),
        // and there won't be a batch for tx 4 because there's max_spout_pending tx active
        TransactionStatus maybeCommit = _activeTx.get(_currTransaction);
        if(maybeCommit!=null && maybeCommit.status == AttemptStatus.PROCESSED) {
            maybeCommit.status = AttemptStatus.COMMITTING;
            _collector.emit(COMMIT_STREAM_ID, new Values(maybeCommit.attempt), maybeCommit.attempt);
            LOG.debug("Emitted on [stream = {}], [tx_status = {}], [{}]", COMMIT_STREAM_ID, maybeCommit, this);
        }
        
        if(_active) {
            if(_activeTx.size() < _maxTransactionActive) {
                Long curr = _currTransaction;
                for(int i=0; i<_maxTransactionActive; i++) {
                    if(!_activeTx.containsKey(curr) && isReady(curr)) {
                        // by using a monotonically increasing attempt id, downstream tasks
                        // can be memory efficient by clearing out state for old attempts
                        // as soon as they see a higher attempt id for a transaction
                        Integer attemptId = _attemptIds.get(curr);
                        if(attemptId==null) {
                            attemptId = 0;
                        } else {
                            attemptId++;
                        }
                        _attemptIds.put(curr, attemptId);
                        for(TransactionalState state: _states) {
                            state.setData(CURRENT_ATTEMPTS, _attemptIds);
                        }
                        
                        TransactionAttempt attempt = new TransactionAttempt(curr, attemptId);
                        final TransactionStatus newTransactionStatus = new TransactionStatus(attempt);
                        _activeTx.put(curr, newTransactionStatus);
                        _collector.emit(BATCH_STREAM_ID, new Values(attempt), attempt);
                        LOG.debug("Emitted on [stream = {}], [tx_attempt = {}], [tx_status = {}], [{}]", BATCH_STREAM_ID, attempt, newTransactionStatus, this);
                        _throttler.markEvent();
                    }
                    curr = nextTransactionId(curr);
                }
            }
        }
    }

    @Override
    public void ack(Object msgId) {
        TransactionAttempt tx = (TransactionAttempt) msgId;
        TransactionStatus status = _activeTx.get(tx.getTransactionId());
        LOG.debug("Ack. [tx_attempt = {}], [tx_status = {}], [{}]", tx, status, this);
        if(status!=null && tx.equals(status.attempt)) {
            if(status.status==AttemptStatus.PROCESSING) {
                status.status = AttemptStatus.PROCESSED;
                LOG.debug("Changed status. [tx_attempt = {}] [tx_status = {}]", tx, status);
            } else if(status.status==AttemptStatus.COMMITTING) {
                _activeTx.remove(tx.getTransactionId());
                _attemptIds.remove(tx.getTransactionId());
                _collector.emit(SUCCESS_STREAM_ID, new Values(tx));
                _currTransaction = nextTransactionId(tx.getTransactionId());
                for(TransactionalState state: _states) {
                    state.setData(CURRENT_TX, _currTransaction);                    
                }
                LOG.debug("Emitted on [stream = {}], [tx_attempt = {}], [tx_status = {}], [{}]", SUCCESS_STREAM_ID, tx, status, this);
            }
            sync();
        }
    }
  • MasterBatchCoordinator在收到ack的时候,如果status是AttemptStatus.PROCESSING状态,则更改status为AttemptStatus.PROCESSED;如果status是AttemptStatus.COMMITTING,则往SUCCESS_STREAM_ID发射tuple;之后调用sync方法
  • nextTuple方法也是调用sync方法,判断如果是AttemptStatus.PROCESSED状态,则更改status为AttemptStatus.COMMITTING,同时往COMMIT_STREAM_ID发射tuple
  • 可以看到这里状态由AttemptStatus.PROCESSING变为AttemptStatus.PROCESSED(nextTuple方法将AttemptStatus.PROCESSED变为AttemptStatus.COMMITTING,然后往COMMIT_STREAM_ID发射tuple),再变为AttemptStatus.COMMITTING(ack的时候,如果是AttemptStatus.COMMITTING状态,则往SUCCESS_STREAM_ID发射tuple)

TridentSpoutExecutor

storm-core-1.2.2-sources.jar!/org/apache/storm/trident/spout/TridentSpoutExecutor.java

    public void execute(BatchInfo info, Tuple input) {
        // there won't be a BatchInfo for the success stream
        TransactionAttempt attempt = (TransactionAttempt) input.getValue(0);
        if(input.getSourceStreamId().equals(MasterBatchCoordinator.COMMIT_STREAM_ID)) {
            if(attempt.equals(_activeBatches.get(attempt.getTransactionId()))) {
                ((ICommitterTridentSpout.Emitter) _emitter).commit(attempt);
                _activeBatches.remove(attempt.getTransactionId());
            } else {
                 throw new FailedException("Received commit for different transaction attempt");
            }
        } else if(input.getSourceStreamId().equals(MasterBatchCoordinator.SUCCESS_STREAM_ID)) {
            // valid to delete before what's been committed since 
            // those batches will never be accessed again
            _activeBatches.headMap(attempt.getTransactionId()).clear();
            _emitter.success(attempt);
        } else {            
            _collector.setBatch(info.batchId);
            _emitter.emitBatch(attempt, input.getValue(1), _collector);
            _activeBatches.put(attempt.getTransactionId(), attempt);
        }
    }
  • TridentSpoutExecutor在execute的时候,判断如果是MasterBatchCoordinator.COMMIT_STREAM_ID的数据,而且TransactionAttempt的txid相等,则调用((ICommitterTridentSpout.Emitter) _emitter).commit(attempt)

TridentBoltExecutor

storm-2.0.0/storm-client/src/jvm/org/apache/storm/trident/topology/TridentBoltExecutor.java

    public void execute(Tuple tuple) {
        if (TupleUtils.isTick(tuple)) {
            long now = System.currentTimeMillis();
            if (now - _lastRotate > _messageTimeoutMs) {
                _batches.rotate();
                _lastRotate = now;
            }
            return;
        }
        String batchGroup = _batchGroupIds.get(tuple.getSourceGlobalStreamId());
        if (batchGroup == null) {
            // this is so we can do things like have simple DRPC that doesn't need to use batch processing
            _coordCollector.setCurrBatch(null);
            _bolt.execute(null, tuple);
            _collector.ack(tuple);
            return;
        }
        IBatchID id = (IBatchID) tuple.getValue(0);
        //get transaction id
        //if it already exists and attempt id is greater than the attempt there


        TrackedBatch tracked = (TrackedBatch) _batches.get(id.getId());
        //        if(_batches.size() > 10 && _context.getThisTaskIndex() == 0) {
        //            System.out.println("Received in " + _context.getThisComponentId() + " " + _context.getThisTaskIndex()
        //                    + " (" + _batches.size() + ")" +
        //                    "\ntuple: " + tuple +
        //                    "\nwith tracked " + tracked +
        //                    "\nwith id " + id +
        //                    "\nwith group " + batchGroup
        //                    + "\n");
        //
        //        }
        //System.out.println("Num tracked: " + _batches.size() + " " + _context.getThisComponentId() + " " + _context.getThisTaskIndex());

        // this code here ensures that only one attempt is ever tracked for a batch, so when
        // failures happen you don't get an explosion in memory usage in the tasks
        if (tracked != null) {
            if (id.getAttemptId() > tracked.attemptId) {
                _batches.remove(id.getId());
                tracked = null;
            } else if (id.getAttemptId() < tracked.attemptId) {
                // no reason to try to execute a previous attempt than we've already seen
                return;
            }
        }

        if (tracked == null) {
            tracked =
                new TrackedBatch(new BatchInfo(batchGroup, id, _bolt.initBatchState(batchGroup, id)), _coordConditions.get(batchGroup),
                                 id.getAttemptId());
            _batches.put(id.getId(), tracked);
        }
        _coordCollector.setCurrBatch(tracked);

        //System.out.println("TRACKED: " + tracked + " " + tuple);

        TupleType t = getTupleType(tuple, tracked);
        if (t == TupleType.COMMIT) {
            tracked.receivedCommit = true;
            checkFinish(tracked, tuple, t);
        } else if (t == TupleType.COORD) {
            int count = tuple.getInteger(1);
            tracked.reportedTasks++;
            tracked.expectedTupleCount += count;
            checkFinish(tracked, tuple, t);
        } else {
            tracked.receivedTuples++;
            boolean success = true;
            try {
                _bolt.execute(tracked.info, tuple);
                if (tracked.condition.expectedTaskReports == 0) {
                    success = finishBatch(tracked, tuple);
                }
            } catch (FailedException e) {
                failBatch(tracked, e);
            }
            if (success) {
                _collector.ack(tuple);
            } else {
                _collector.fail(tuple);
            }
        }
        _coordCollector.setCurrBatch(null);
    }
  • 这里再调用_bolt.execute(tracked.info, tuple)之后,会调用_collector.ack(tuple)完成ack

SpoutOutputCollector

storm-core-1.2.2-sources.jar!/org/apache/storm/spout/SpoutOutputCollector.java

    /**
     * Emits a new tuple to the specified output stream with the given message ID.
     * When Storm detects that this tuple has been fully processed, or has failed
     * to be fully processed, the spout will receive an ack or fail callback respectively
     * with the messageId as long as the messageId was not null. If the messageId was null,
     * Storm will not track the tuple and no callback will be received. 
     * Note that Storm's event logging functionality will only work if the messageId
     * is serializable via Kryo or the Serializable interface. The emitted values must be immutable.
     *
     * @return the list of task ids that this tuple was sent to
     */
    public List<Integer> emit(String streamId, List<Object> tuple, Object messageId) {
        return _delegate.emit(streamId, tuple, messageId);
    }
  • 这里调用了_delegate.emit的emit,这里的_delegate为SpoutOutputCollectorImpl

SpoutOutputCollectorImpl

storm-2.0.0/storm-client/src/jvm/org/apache/storm/executor/spout/SpoutOutputCollectorImpl.java

    public List<Integer> emit(String streamId, List<Object> tuple, Object messageId) {
        try {
            return sendSpoutMsg(streamId, tuple, messageId, null);
        } catch (InterruptedException e) {
            LOG.warn("Spout thread interrupted during emit().");
            throw new RuntimeException(e);
        }
    }

    private List<Integer> sendSpoutMsg(String stream, List<Object> values, Object messageId, Integer outTaskId) throws
        InterruptedException {
        emittedCount.increment();

        List<Integer> outTasks;
        if (outTaskId != null) {
            outTasks = taskData.getOutgoingTasks(outTaskId, stream, values);
        } else {
            outTasks = taskData.getOutgoingTasks(stream, values);
        }

        final boolean needAck = (messageId != null) && hasAckers;

        final List<Long> ackSeq = needAck ? new ArrayList<>() : null;

        final long rootId = needAck ? MessageId.generateId(random) : 0;

        for (int i = 0; i < outTasks.size(); i++) { // perf critical path. don't use iterators.
            Integer t = outTasks.get(i);
            MessageId msgId;
            if (needAck) {
                long as = MessageId.generateId(random);
                msgId = MessageId.makeRootId(rootId, as);
                ackSeq.add(as);
            } else {
                msgId = MessageId.makeUnanchored();
            }

            final TupleImpl tuple =
                new TupleImpl(executor.getWorkerTopologyContext(), values, executor.getComponentId(), this.taskId, stream, msgId);
            AddressedTuple adrTuple = new AddressedTuple(t, tuple);
            executor.getExecutorTransfer().tryTransfer(adrTuple, executor.getPendingEmits());
        }
        if (isEventLoggers) {
            taskData.sendToEventLogger(executor, values, executor.getComponentId(), messageId, random, executor.getPendingEmits());
        }

        if (needAck) {
            boolean sample = executor.samplerCheck();
            TupleInfo info = new TupleInfo();
            info.setTaskId(this.taskId);
            info.setStream(stream);
            info.setMessageId(messageId);
            if (isDebug) {
                info.setValues(values);
            }
            if (sample) {
                info.setTimestamp(System.currentTimeMillis());
            }

            pending.put(rootId, info);
            List<Object> ackInitTuple = new Values(rootId, Utils.bitXorVals(ackSeq), this.taskId);
            taskData.sendUnanchored(Acker.ACKER_INIT_STREAM_ID, ackInitTuple, executor.getExecutorTransfer(), executor.getPendingEmits());
        } else if (messageId != null) {
            // Reusing TupleInfo object as we directly call executor.ackSpoutMsg() & are not sending msgs. perf critical
            if (isDebug) {
                if (spoutExecutorThdId != Thread.currentThread().getId()) {
                    throw new RuntimeException("Detected background thread emitting tuples for the spout. " +
                                               "Spout Output Collector should only emit from the main spout executor thread.");
                }
            }
            globalTupleInfo.clear();
            globalTupleInfo.setStream(stream);
            globalTupleInfo.setValues(values);
            globalTupleInfo.setMessageId(messageId);
            globalTupleInfo.setTimestamp(0);
            globalTupleInfo.setId("0:");
            Long timeDelta = 0L;
            executor.ackSpoutMsg(executor, taskData, timeDelta, globalTupleInfo);
        }
        return outTasks;
    }
  • 这里neekAck的话,会调用taskData.sendUnanchored(Acker.ACKER_INIT_STREAM_ID, ackInitTuple, executor.getExecutorTransfer(), executor.getPendingEmits());
  • 注意这里的ackInitTuple为Values(rootId, Utils.bitXorVals(ackSeq), this.taskId),第二个值对List<Long> ackSeq进行了Utils.bitXorVals运算
  • ackSeq在没有outTask的时候,是个空的list,它的Utils.bitXorVals操作为0

Utils

storm-2.0.0/storm-client/src/jvm/org/apache/storm/utils/Utils.java

    public static long bitXorVals(List<Long> coll) {
        long result = 0;
        for (Long val : coll) {
            result ^= val;
        }
        return result;
    }

    public static long bitXor(Long a, Long b) {
        return a ^ b;
    }
  • bitXor运算是storm的ack机制的核心运算

Acker

storm-2.0.0/storm-client/src/jvm/org/apache/storm/daemon/Acker.java

    public void execute(Tuple input) {
        if (TupleUtils.isTick(input)) {
            Map<Object, AckObject> tmp = pending.rotate();
            LOG.debug("Number of timeout tuples:{}", tmp.size());
            return;
        }

        boolean resetTimeout = false;
        String streamId = input.getSourceStreamId();
        Object id = input.getValue(0);
        AckObject curr = pending.get(id);
        if (ACKER_INIT_STREAM_ID.equals(streamId)) {
            if (curr == null) {
                curr = new AckObject();
                pending.put(id, curr);
            }
            curr.updateAck(input.getLong(1));
            curr.spoutTask = input.getInteger(2);
        } else if (ACKER_ACK_STREAM_ID.equals(streamId)) {
            if (curr == null) {
                curr = new AckObject();
                pending.put(id, curr);
            }
            curr.updateAck(input.getLong(1));
        } else if (ACKER_FAIL_STREAM_ID.equals(streamId)) {
            // For the case that ack_fail message arrives before ack_init
            if (curr == null) {
                curr = new AckObject();
            }
            curr.failed = true;
            pending.put(id, curr);
        } else if (ACKER_RESET_TIMEOUT_STREAM_ID.equals(streamId)) {
            resetTimeout = true;
            if (curr != null) {
                pending.put(id, curr);
            } //else if it has not been added yet, there is no reason time it out later on
        } else if (Constants.SYSTEM_FLUSH_STREAM_ID.equals(streamId)) {
            collector.flush();
            return;
        } else {
            LOG.warn("Unknown source stream {} from task-{}", streamId, input.getSourceTask());
            return;
        }

        int task = curr.spoutTask;
        if (task >= 0 && (curr.val == 0 || curr.failed || resetTimeout)) {
            Values tuple = new Values(id, getTimeDeltaMillis(curr.startTime));
            if (curr.val == 0) {
                pending.remove(id);
                collector.emitDirect(task, ACKER_ACK_STREAM_ID, tuple);
            } else if (curr.failed) {
                pending.remove(id);
                collector.emitDirect(task, ACKER_FAIL_STREAM_ID, tuple);
            } else if (resetTimeout) {
                collector.emitDirect(task, ACKER_RESET_TIMEOUT_STREAM_ID, tuple);
            } else {
                throw new IllegalStateException("The checks are inconsistent we reach what should be unreachable code.");
            }
        }

        collector.ack(input);
    }

    private static class AckObject {
        public long val = 0L;
        public long startTime = Time.currentTimeMillis();
        public int spoutTask = -1;
        public boolean failed = false;

        // val xor value
        public void updateAck(Long value) {
            val = Utils.bitXor(val, value);
        }
    }
  • 当Acker收到ACKER_INIT_STREAM_ID时,如果当前AckObject为null,则创建一个AckObject,其val默认为0;之后调用curr.updateAck(input.getLong(1)),即根据tuple的第二个值来更新AckObject的val
  • SpoutOutputCollectorImpl发射过来的tuple为Values(rootId, Utils.bitXorVals(ackSeq), this.taskId),其第二个值为Utils.bitXorVals(ackSeq);askSeq为List<Long>,当没有outputTask的时候,其list为空,而Utils.bitXorVals值为0,这种情况下,curr.updateAck(0)返回0
  • Acker在execute的最后会判断,如果curr.val == 0则会触发collector.emitDirect(task, ACKER_ACK_STREAM_ID, tuple)

SpoutExecutor

storm-2.0.0/storm-client/src/jvm/org/apache/storm/executor/spout/SpoutExecutor.java

    public void tupleActionFn(int taskId, TupleImpl tuple) throws Exception {
        String streamId = tuple.getSourceStreamId();
        if (Constants.SYSTEM_FLUSH_STREAM_ID.equals(streamId)) {
            spoutOutputCollector.flush();
        } else if (streamId.equals(Constants.SYSTEM_TICK_STREAM_ID)) {
            pending.rotate();
        } else if (streamId.equals(Constants.METRICS_TICK_STREAM_ID)) {
            metricsTick(idToTask.get(taskId - idToTaskBase), tuple);
        } else if (streamId.equals(Constants.CREDENTIALS_CHANGED_STREAM_ID)) {
            Object spoutObj = idToTask.get(taskId - idToTaskBase).getTaskObject();
            if (spoutObj instanceof ICredentialsListener) {
                ((ICredentialsListener) spoutObj).setCredentials((Map<String, String>) tuple.getValue(0));
            }
        } else if (streamId.equals(Acker.ACKER_RESET_TIMEOUT_STREAM_ID)) {
            Long id = (Long) tuple.getValue(0);
            TupleInfo pendingForId = pending.get(id);
            if (pendingForId != null) {
                pending.put(id, pendingForId);
            }
        } else {
            Long id = (Long) tuple.getValue(0);
            Long timeDeltaMs = (Long) tuple.getValue(1);
            TupleInfo tupleInfo = pending.remove(id);
            if (tupleInfo != null && tupleInfo.getMessageId() != null) {
                if (taskId != tupleInfo.getTaskId()) {
                    throw new RuntimeException("Fatal error, mismatched task ids: " + taskId + " " + tupleInfo.getTaskId());
                }
                Long timeDelta = null;
                if (hasAckers) {
                    long startTimeMs = tupleInfo.getTimestamp();
                    if (startTimeMs != 0) {
                        timeDelta = timeDeltaMs;
                    }
                }
                if (streamId.equals(Acker.ACKER_ACK_STREAM_ID)) {
                    ackSpoutMsg(this, idToTask.get(taskId - idToTaskBase), timeDelta, tupleInfo);
                } else if (streamId.equals(Acker.ACKER_FAIL_STREAM_ID)) {
                    failSpoutMsg(this, idToTask.get(taskId - idToTaskBase), timeDelta, tupleInfo, "FAIL-STREAM");
                }
            }
        }
    }

    public void ackSpoutMsg(SpoutExecutor executor, Task taskData, Long timeDelta, TupleInfo tupleInfo) {
        try {
            ISpout spout = (ISpout) taskData.getTaskObject();
            int taskId = taskData.getTaskId();
            if (executor.getIsDebug()) {
                LOG.info("SPOUT Acking message {} {}", tupleInfo.getId(), tupleInfo.getMessageId());
            }
            spout.ack(tupleInfo.getMessageId());
            if (!taskData.getUserContext().getHooks().isEmpty()) { // avoid allocating SpoutAckInfo obj if not necessary
                new SpoutAckInfo(tupleInfo.getMessageId(), taskId, timeDelta).applyOn(taskData.getUserContext());
            }
            if (hasAckers && timeDelta != null) {
                executor.getStats().spoutAckedTuple(tupleInfo.getStream(), timeDelta,
                                                    taskData.getTaskMetrics().getAcked(tupleInfo.getStream()));
            }
        } catch (Exception e) {
            throw Utils.wrapInRuntime(e);
        }
    }
  • SpoutExecutor在收到Acker.ACKER_ACK_STREAM_ID的时候,会调用ackSpoutMsg方法,该方法会回调原始spout的ack方法,即spout.ack(tupleInfo.getMessageId())

小结

  • MasterBatchCoordinator在第一次收到同一个msgId的ack时(第一次被调用),status由开始的AttemptStatus.PROCESSING转变为AttemptStatus.PROCESSED,在之后的sync方法里头AttemptStatus.PROCESSED转变为AttemptStatus.COMMITTING,然后往MasterBatchCoordinator.COMMIT_STREAM_ID发射tuple
  • 当用户的spout是ICommitterTridentSpout时,TridentTopologyBuilder.buildTopology的时候,会配置allGrouping(masterCoordinator(batchGroup), MasterBatchCoordinator.COMMIT_STREAM_ID);TridentSpoutExecutor会接收MasterBatchCoordinator.COMMIT_STREAM_ID的数据,然后调用((ICommitterTridentSpout.Emitter) _emitter).commit(attempt)方法;之后TridentBoltExecutor在TridentSpoutExecutor.execute执行完了之后会自动ack该tuple,然后调用MasterBatchCoordinator的ack方法(第二次被调用),然后触发_collector.emit(SUCCESS_STREAM_ID, new Values(tx))
  • 当用户的spout不是ICommitterTridentSpout时,这个时候整个topology就没有component去接收MasterBatchCoordinator.COMMIT_STREAM_ID发射的tuple,即outgoingTasks为空,那么在SpoutOutputCollectorImpl在needAck的情况下,会给Acker.ACKER_INIT_STREAM_ID发射的tuple,其第二个值为Utils.bitXorVals(ackSeq),ackSeq为空list(根据outgoingTasks来计算),该值为0;那么在Acker接收到ACKER_INIT_STREAM_ID时,curr.updateAck(input.getLong(1))之后curr.val的值为0;这样Acker在execute的最后看到curr.val为0,又会给Acker.ACKER_ACK_STREAM_ID发射tuple,SpoutExecutor在收到Acker.ACKER_ACK_STREAM_ID的时候,会调用ackSpoutMsg方法,该方法会回调原始spout的ack方法,即spout.ack(tupleInfo.getMessageId());即当一个streamId没有component消费的时候,会自动ack;这样对于spout不是ICommitterTridentSpout的情况,在往MasterBatchCoordinator.COMMIT_STREAM_ID发射tuple之后,会调用MasterBatchCoordinator的ack方法(第二次被调用),然后触发_collector.emit(SUCCESS_STREAM_ID, new Values(tx))
spout是否是ICommitterTridentSpout类型的区别在于不是ICommitterTridentSpout类型,它在往MasterBatchCoordinator.COMMIT_STREAM_ID发射tuple之后,Acker会自动ack,调用MasterBatchCoordinator的ack方法(第二次被调用);而ICommitterTridentSpout类型会先执行((ICommitterTridentSpout.Emitter) _emitter).commit(attempt)方法,然后由TridentBoltExecutor来ack,然后调用MasterBatchCoordinator的ack方法(第二次被调用);二者在成功的场景下最后都会往SUCCESS_STREAM_ID发送tuple

doc


codecraft
11.9k 声望2k 粉丝

当一个代码的工匠回首往事时,不因虚度年华而悔恨,也不因碌碌无为而羞愧,这样,当他老的时候,可以很自豪告诉世人,我曾经将代码注入生命去打造互联网的浪潮之巅,那是个很疯狂的时代,我在一波波的浪潮上留下...


引用和评论

0 条评论