Problem
Given a directed, acyclic graph of N nodes. Find all possible paths from node 0 to node N-1, and return them in any order.
The graph is given as follows: the nodes are 0, 1, ..., graph.length - 1. graph[i] is a list of all nodes j for which the edge (i, j) exists.
Example:
Input: [[1,2], [3], [3], []]
Output: [[0,1,3],[0,2,3]]
Explanation: The graph looks like this:
0--->1
| |
v v
2--->3
There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Note:
The number of nodes in the graph will be in the range [2, 15].
You can print different paths in any order, but you should keep the order of nodes inside one path.
Solution - DFS
class Solution {
public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
List<List<Integer>> res = new ArrayList<>();
List<Integer> temp = new ArrayList<>();
int firstNode = 0;
temp.add(firstNode);
dfs(graph, firstNode, temp, res);
return res;
}
private void dfs(int[][] graph, int node, List<Integer> temp, List<List<Integer>> res) {
if (node == graph.length-1) {
res.add(new ArrayList<>(temp));
return;
}
for (int neighbor: graph[node]) {
temp.add(neighbor);
dfs(graph, neighbor, temp, res);
temp.remove(temp.size()-1);
}
}
}
Solution - BFS
class Solution {
public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
int n = graph.length;
List<List<Integer>> res = new ArrayList<>();
Deque<List<Integer>> queue = new ArrayDeque<>();
queue.offer(Arrays.asList(0));
while (!queue.isEmpty()) {
List<Integer> cur = queue.poll();
int size = cur.size();
if (cur.get(size-1) == n-1) {
res.add(cur);
continue;
}
for (int node: graph[cur.get(size-1)]) {
List<Integer> next = new ArrayList<>(cur);
next.add(node);
queue.offer(next);
}
}
return res;
}
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。