Problem
Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input: s = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: the subarray [4,3] has the minimal length under the problem constraint.
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
Solution
class Solution {
public int minSubArrayLen(int target, int[] nums) {
if (nums == null || nums.length == 0) return 0;
int i = 0, j = 0, sum = 0, min = Integer.MAX_VALUE;
while (i <= j && j < nums.length) {
sum += nums[j];
while (sum >= target && i <= j) {
min = Math.min(min, j-i+1);
sum -= nums[i];
i++;
}
j++;
}
return min == Integer.MAX_VALUE ? 0 : min;
}
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。