Problem
A full binary tree is a binary tree where each node has exactly 0 or 2 children.
Return a list of all possible full binary trees with N nodes. Each element of the answer is the root node of one possible tree.
Each node of each tree in the answer must have node.val = 0.
You may return the final list of trees in any order.
Example 1:
Input: 7
Output: [[0,0,0,null,null,0,0,null,null,0,0],[0,0,0,null,null,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,null,null,null,null,0,0],[0,0,0,0,0,null,null,0,0]]
Explanation:
Note:
1 <= N <= 20
Solution
class Solution {
public List<TreeNode> allPossibleFBT(int N) {
List<TreeNode> res = new ArrayList<>();
if (N < 1) return res;
if (N == 1) {
res.add(new TreeNode(0));
return res;
}
if (N%2 == 0) return res;
for (int i = 1; i < N-1; i+=2) {
List<TreeNode> left = allPossibleFBT(i);
List<TreeNode> right = allPossibleFBT(N-1-i);
for (TreeNode l: left) {
for (TreeNode r: right) {
TreeNode root = new TreeNode(0);
root.left = l;
root.right = r;
res.add(root);
}
}
}
return res;
}
//If we only need the count
Map<Integer, Integer> map = new HashMap<>();
public int allPossibleCount(int N) {
map.put(1, 1);
if (N == 1) return 1;
if (N < 1 || N%2 == 0) return 0;
int count = 0;
for (int i = 1; i < N-1; i+=2) {
int left = map.containsKey(i) ? map.get(i) : allPossibleCount(i);
int right = map.containsKey(N-1-i) ? map.get(N-1-i) : allPossibleCount(N-1-i);
map.put(i, left);
map.put(N-1-i, right);
count += left * right;
}
return count;
}
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。