一. 概述
浅析下android的native层binder的实现,基于android源码5.1,参考mediaService的代码;
1.1 问题
因为前两篇我们用c写过binder的实例,实现了service和client端,也分析了驱动,从上到下好好的看了下binder的实现原理,但是当我自己看到binder的native的源码时,一脸懵逼,封装的太厉害了,脑海中产生了很多疑问,如下:
- a. native是如何去和ServiceManager通信的?
- b. service是如何去注册服务的?
- c. service是如何响应服务的?
- d. 怎么发送数据给驱动的?
1.2 源码参考
frameworksavincludemediaIMediaPlayerService.h
frameworksavmedialibmediaIMediaPlayerService.cpp
frameworksavmedialibmediaplayerserviceMediaPlayerService.h
frameworksavmedialibmediaplayerserviceMediaPlayerService.cpp
frameworksavmediamediaserverMain_mediaserver.cpp (server, addService)
1.3 模板类
binder的native涉及到两个模板类,分别是Bnxxx
和Bpxxx
,前者你可以理解为binder native,主要用于service端的服务对象,后者你可以理解为binder proxy,一个代理对象,用service封装好的接口,这要client端调用后,就可以执行对应的服务;对比下c代码实现的client时调用interface_led_on
函数,现在不需要自己实现而是service端帮忙封装好,
1.4. 剖析源码
从主函数看起,参考media源码: Main_mediaserver.cpp
int main(int argc __unused, char** argv)
{
....
if (doLog && (childPid = fork()) != 0) {
.....
} else {
....
sp<ProcessState> proc(ProcessState::self()); ①
sp<IServiceManager> sm = defaultServiceManager(); ②
....
MediaPlayerService::instantiate(); ③
....
ProcessState::self()->startThreadPool(); ④
IPCThreadState::self()->joinThreadPool(); ⑤
}
}
①: 获取一个ProcessState实例(详见2.1);
②: 获取一个ServiceManager服务(BpServiceManager对象);
③: 添加媒体播放服务;
④: 创建一个线程池;
⑤: 进入主循环;
二. 打开驱动通道
2.1 ProcessState::self
sp<ProcessState> ProcessState::self()
{
Mutex::Autolock _l(gProcessMutex);
if (gProcess != NULL) {
return gProcess;
}
gProcess = new ProcessState;
return gProcess;
}
可以看出这是个单例,也就是说一个进程只允许一个ProcessState
对象被创建;
2.2 ProcessState::ProcessState
ProcessState::ProcessState()
: mDriverFD(open_driver()) ①
, mVMStart(MAP_FAILED)
, mManagesContexts(false)
, mBinderContextCheckFunc(NULL)
, mBinderContextUserData(NULL)
, mThreadPoolStarted(false)
, mThreadPoolSeq(1)
{
if (mDriverFD >= 0) {
// XXX Ideally, there should be a specific define for whether we
// have mmap (or whether we could possibly have the kernel module
// availabla).
#if !defined(HAVE_WIN32_IPC)
// mmap the binder, providing a chunk of virtual address space to receive transactions.
mVMStart = mmap(0, BINDER_VM_SIZE, PROT_READ, MAP_PRIVATE | MAP_NORESERVE, mDriverFD, 0); ②
if (mVMStart == MAP_FAILED) {
// *sigh*
ALOGE("Using /dev/binder failed: unable to mmap transaction memory.\n");
close(mDriverFD);
mDriverFD = -1;
}
#else
mDriverFD = -1;
#endif
}
LOG_ALWAYS_FATAL_IF(mDriverFD < 0, "Binder driver could not be opened. Terminating.");
}
①: 打开binder驱动设备并初始化文件描述符;
②: 建立内存映射;
是不是觉得场景很熟悉,这和我们前面用c写的流程是一样的,先打开一个binder设备再建立内存映射;
不过open_driver
函数中它多做一个功能就是设置binder的最大线程数,具体代码我这就不贴了,避免篇幅过长;
三. 获取沟通桥梁
3.1 defaultServiceManager
sp<IServiceManager> defaultServiceManager()
{
if (gDefaultServiceManager != NULL) return gDefaultServiceManager;
{
AutoMutex _l(gDefaultServiceManagerLock);
while (gDefaultServiceManager == NULL) {
gDefaultServiceManager = interface_cast<IServiceManager>(
ProcessState::self()->getContextObject(NULL));
if (gDefaultServiceManager == NULL)
sleep(1);
}
}
return gDefaultServiceManager;
}
这也是个单例,通过interface_cast
这个模板函数将getContextObject
的值转换成IServiceManager
类型,我们先看下getContextObject
到底返回了什么给我们?
3.2 ProcessState::getContextObject
sp<IBinder> ProcessState::getContextObject(const sp<IBinder>& /*caller*/)
{
return getStrongProxyForHandle(0);
}
通过getStrongProxyForHandle
获取一个IBinder
对象;
3.3 ProcessState::getStrongProxyForHandle
sp<IBinder> ProcessState::getStrongProxyForHandle(int32_t handle)
{
sp<IBinder> result;
AutoMutex _l(mLock);
handle_entry* e = lookupHandleLocked(handle); ①
if (e != NULL) {
IBinder* b = e->binder;
if (b == NULL || !e->refs->attemptIncWeak(this)) { ②
if (handle == 0) {
Parcel data;
status_t status = IPCThreadState::self()->transact(
0, IBinder::PING_TRANSACTION, data, NULL, 0);
if (status == DEAD_OBJECT)
return NULL;
}
b = new BpBinder(handle); ③
e->binder = b; ④
if (b) e->refs = b->getWeakRefs();
result = b;
} else {
result.force_set(b);
e->refs->decWeak(this);
}
}
return result;
}
①: 根据handle在mHandleToObject
容器中查找是否有对应object,没有则插入一个新的object;
②: 判断刚返回的object中的binder成员是否为空,为空说明是新创建的;
③: 创建一个新的BpBinder
对象,根据handle
值(详见3.4);
④: 将创建的BpBinder
对象填充进object;
注意BpBinder
这是个代理对象且它的基类为IBinder
,接下来看下这个代理对象到底做了什么?
其实根据这个函数的名字我们也能猜出点东西,结合笔者前面C服务应用
时写的,client端在获取到一个handle时,一直都是通过这个handle去与驱动进行交互;
那么我们这个handle是不是也是做同样的功能,转换成面向对象的写法变成了一个代理对象?
3.4 BpBinder::BpBinder
BpBinder::BpBinder(int32_t handle)
: mHandle(handle)
, mAlive(1)
, mObitsSent(0)
, mObituaries(NULL)
{
ALOGV("Creating BpBinder %p handle %d\n", this, mHandle);
extendObjectLifetime(OBJECT_LIFETIME_WEAK);
IPCThreadState::self()->incWeakHandle(handle);
}
BpBinder
的构造函数保留下handle的值并对该handle增加了引用,看到这里可以结合C服务应用
篇联想下该类会做什么功能;
当笔者看到这的时候,认为这是一个客户端用来和service交互的代理类,完成驱动交互的工作,类似binder_call
函数;
3.5 BpBinder::transact
status_t BpBinder::transact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
// Once a binder has died, it will never come back to life.
if (mAlive) {
status_t status = IPCThreadState::self()->transact(
mHandle, code, data, reply, flags);
if (status == DEAD_OBJECT) mAlive = 0;
return status;
}
return DEAD_OBJECT;
}
看到BpBinder
类中的这个方法,完全验证了我们的思想,但是发现它并不是直接去和驱动交互而是利用IPCThreadState::self()->transact
这个方法进行,这个我们后面再分析;
3.6 interface_cast
前面在分析defaultServiceManager
時,中有个模板类进行类型转换,前面也分析ProcessState::self()->getContextObject
是返回一个Bpbinder
对象,现在看下如何转换;
template<typename INTERFACE>
inline sp<INTERFACE> interface_cast(const sp<IBinder>& obj)
{
return INTERFACE::asInterface(obj);
}
将里面 的INTERFACE
替换成IServiceManager
,其实是这样的IServiceManager::asInterface(obj)
; 在IServiceManager
类中找了一圈发现没有该方法,最后发现是用宏定义实现,如下:
define DECLARE_META_INTERFACE(INTERFACE)
define IMPLEMENT_META_INTERFACE(INTERFACE, NAME)
3.7 IMPLEMENT_META_INTERFACE
因为DECLARE_META_INTERFACE
仅仅只是声明,替换下就可以看出实现的东西了,我们就分析下IMPLEMENT_META_INTERFACE
看看是这其中做了什么;
#define IMPLEMENT_META_INTERFACE(INTERFACE, NAME) \
const android::String16 I##INTERFACE::descriptor(NAME); \
const android::String16& \
I##INTERFACE::getInterfaceDescriptor() const { \
return I##INTERFACE::descriptor; \
} \
android::sp<I##INTERFACE> I##INTERFACE::asInterface( \
const android::sp<android::IBinder>& obj) \
{ \
android::sp<I##INTERFACE> intr; \
if (obj != NULL) { \
intr = static_cast<I##INTERFACE*>( \
obj->queryLocalInterface( \
I##INTERFACE::descriptor).get()); \
if (intr == NULL) { \
intr = new Bp##INTERFACE(obj); \
} \
} \
return intr; \
} \
I##INTERFACE::I##INTERFACE() { } \
I##INTERFACE::~I##INTERFACE() { }
IMPLEMENT_META_INTERFACE(ServiceManager, "android.os.IServiceManager");
转换后如下:
const android::String16 IServiceManager::descriptor("android.os.IServiceManager"); \
const android::String16& \
IIServiceManager::getInterfaceDescriptor() const { \
return IIServiceManager::descriptor; \
} \
android::sp<IServiceManager> IServiceManager::asInterface( \
const android::sp<android::IBinder>& obj) \
{ \
android::sp<IServiceManager> intr; \
if (obj != NULL) { \
intr = static_cast<IServiceManager*>( \
obj->queryLocalInterface( \
IServiceManager::descriptor).get()); \
if (intr == NULL) { \
intr = new BpServiceManager(obj); \
} \
} \
return intr; \
} \
IServiceManager::IServiceManager() { } \
IServiceManager::~IServiceManager() { }
注意:IServiceManager::asInterface
方法,他将传进去的BpBiner
对象又用来创建BpServiceManager
对象;接下来关注下BpServiceManager
的实现;
3.8 BpServiceManager::BpServiceManager
BpServiceManager(const sp<IBinder>& impl)
: BpInterface<IServiceManager>(impl)
{
}
被用来初始化BpInterface
模板了,接着往下看这个模板类做了什么;
3.9 BpInterface::BpInterface
template<typename INTERFACE>
inline BpInterface<INTERFACE>::BpInterface(const sp<IBinder>& remote)
: BpRefBase(remote)
{
}
这里回顾下,怕读者看蒙圈了,传进来的remote
变量是我们前面通过getContextObject
方法,获取到的handle为0的一个BpBinder
对象,该对象是个代理类,是IBinder
的派生类,它可以与ServiceManager进行通信的一个代理类;client
和service
都可以通过该与ServiceManager
进行通信,前者可以通过它获取服务,后者可以通过它注册服务,重点是handle为0,它代表着ServiceManager
,不理解的笔者可以看下C服务应用篇;
接下来看下BpRefBase
里做了什么;
3.10 BpRefBase::BpRefBase
BpRefBase::BpRefBase(const sp<IBinder>& o)
: mRemote(o.get()), mRefs(NULL), mState(0)
{
extendObjectLifetime(OBJECT_LIFETIME_WEAK);
if (mRemote) {
mRemote->incStrong(this); // Removed on first IncStrong().
mRefs = mRemote->createWeak(this); // Held for our entire lifetime.
}
}
注意:mRemote
成员,它是个IBinder
指针类型,它指向了传进来的BpBinder
对象;当笔者看到者时突然顿悟,这样BpServiceManager
就被赋予了力量可以通过它去和ServiceManager
打交道了;
四. 到达彼岸
PS:defaultServiceManager
单例获取到的对象是BpServiceManager
对象; ServiceManager
进行沟通的对象,我们已经知道如何获取到了现在看下service
如何去注册自己;
4.1 MediaPlayerService::instantiate
void MediaPlayerService::instantiate() {
defaultServiceManager()->addService(
String16("media.player"), new MediaPlayerService());
}
通俗点就是调用defaultServiceManager
单例中的addService
方法,将MediaPlayerService
服务注册,接下来看下addService
做了什么;
4.2 BpServiceManager::addService
virtual status_t addService(const String16& name, const sp<IBinder>& service,
bool allowIsolated)
{
Parcel data, reply;
data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
data.writeString16(name);
data.writeStrongBinder(service);
data.writeInt32(allowIsolated ? 1 : 0);
status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
return err == NO_ERROR ? reply.readExceptionCode() : err;
}
是不是觉得事成相识的感觉,与前面C服务应用篇
一样,构造好数据然后发送;remote
方法不就是我们前面分析时BpRefBase
类中的方法,返回一个BpBinder
指针(mRemote);该方法怎么实现后面再说,这里马后炮一下,先讲下writeStrongBinder
;
4.3 Parcel::writeStrongBinder
status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
{
return flatten_binder(ProcessState::self(), val, this);
}
status_t flatten_binder(const sp<ProcessState>& /*proc*/,
const sp<IBinder>& binder, Parcel* out)
{
flat_binder_object obj;
obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
if (binder != NULL) {
IBinder *local = binder->localBinder(); ①
if (!local) {
BpBinder *proxy = binder->remoteBinder(); ②
if (proxy == NULL) {
ALOGE("null proxy");
}
const int32_t handle = proxy ? proxy->handle() : 0;
obj.type = BINDER_TYPE_HANDLE;
obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
obj.handle = handle;
obj.cookie = 0;
} else {
obj.type = BINDER_TYPE_BINDER;
obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
obj.cookie = reinterpret_cast<uintptr_t>(local); ③
}
} else {
obj.type = BINDER_TYPE_BINDER;
obj.binder = 0;
obj.cookie = 0;
}
return finish_flatten_binder(binder, obj, out); ④
}
①: 获取BBinder对象;
②: 获取一个BpBinder对象;
③: 将获取到BBinder对象保存进cookie;
④: 将该构造好的obj写进数据块中;
注意:形参中传进来的binder
是个Service服务对象,通过localBinder
方法查看传进来的binder是否有由BBinder对象派生,不是说明这是一个handle,即请求服务,否则为注册服务;与C服务应用篇做对别,有个差别就是这里用到了cookie,将Service对象保存下来了,一开始看到这里不理解,看到后面才明白的;
localBinder
方法由BBinder
继承后,会返回一个BBinder
本身的指针,否则会返回null;
4.4 BnMediaPlayerService::onTransact
我们不关心 new MediaPlayerService()
是如何构造的,前面分析到需要通过继承BBinder
来判断是注册还是请求服务;
接下来看下媒体类的继承关系;
class MediaPlayerService : public BnMediaPlayerService
class BnMediaPlayerService: public BnInterface<IMediaPlayerService>
class BnInterface : public INTERFACE, public BBinder
这样一层层下来,最后发现是通过BnInterface
继承了BBinder
函数; 继续看BBinder
中的localBinder
方法:
BBinder* BBinder::localBinder()
{
return this;
}
果然和我们前面分析的一样,返回了BBinder本身;
其实主角是我们的onTransact
方法:
status_t BBinder::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t /*flags*/)
{
switch (code) {
case INTERFACE_TRANSACTION:
reply->writeString16(getInterfaceDescriptor());
return NO_ERROR;
case DUMP_TRANSACTION: {
int fd = data.readFileDescriptor();
int argc = data.readInt32();
Vector<String16> args;
for (int i = 0; i < argc && data.dataAvail() > 0; i++) {
args.add(data.readString16());
}
return dump(fd, args);
}
case SYSPROPS_TRANSACTION: {
report_sysprop_change();
return NO_ERROR;
}
default:
return UNKNOWN_TRANSACTION;
}
}
该方法由派生类复写,用于服务客户端的请求服务,根据客户端传来的不同的code
执行不同的服务;
class BnMediaPlayerService: public BnInterface<IMediaPlayerService>
{
public:
virtual status_t onTransact( uint32_t code,
const Parcel& data,
Parcel* reply,
uint32_t flags = 0);
};
BnMediaPlayerService
是有复写该方法的;
4.5 IPCThreadState::transact
数据的构造,注册我们都知道怎么实现了,但是怎么发送给驱动我们还没有分析,前面分析时BpBinder::transact
的实现是通过IPCThreadState::transact
的方法来实现,接下来分析下:
status_t IPCThreadState::transact(int32_t handle,
uint32_t code, const Parcel& data,
Parcel* reply, uint32_t flags)
{
status_t err = data.errorCheck();
flags |= TF_ACCEPT_FDS;
if (err == NO_ERROR) {
LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(),
(flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY");
err = writeTransact
ionData(BC_TRANSACTION, flags, handle, code, data, NfaULL); ①
}
if (err != NO_ERROR) {
if (reply) reply->setError(err);
return (mLastError = err);
}
if ((flags & TF_ONE_WAY) == 0) {
if (reply) {
err = waitForResponse(reply); ②
} else {
Parcel fakeReply;
err = waitForResponse(&fakeReply);
}
IF_LOG_TRANSACTIONS() {
TextOutput::Bundle _b(alog);
alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand "
<< handle << ": ";
if (reply) alog << indent << *reply << dedent << endl;
else alog << "(none requested)" << endl;
}
} else {
err = waitForResponse(NULL, NULL);
}
return err;
}
①: 构造发送数据和命令;
②: 等待响应;
笔者刚开始看的时候一脸懵逼,根据方法名,构造数据,等待响应,那发送呢?
一开始以为在构造数据的时候并发出去了,毕竟它用了write;后来才发现秘密在waitForResponse
方法中;
4.6 IPCThreadState::waitForResponse
status_t IPCThreadState::sendReply(const Parcel& reply, uint32_t flags)
{
status_t err;
status_t statusBuffer;
err = writeTransactionData(BC_REPLY, flags, -1, 0, reply, &statusBuffer);
if (err < NO_ERROR) return err;
return waitForResponse(NULL, NULL);
}
status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult)
{
int32_t cmd;
int32_t err;
while (1) {
if ((err=talkWithDriver()) < NO_ERROR) break; ①
err = mIn.errorCheck();
if (err < NO_ERROR) break;
if (mIn.dataAvail() == 0) continue;
cmd = mIn.readInt32(); ②
IF_LOG_COMMANDS() {
alog << "Processing waitForResponse Command: "
<< getReturnString(cmd) << endl;
}
switch (cmd) {
case BR_TRANSACTION_COMPLETE:
if (!reply && !acquireResult) goto finish;
break;
case BR_DEAD_REPLY:
err = DEAD_OBJECT;
goto finish;
case BR_FAILED_REPLY:
err = FAILED_TRANSACTION;
goto finish;
case BR_ACQUIRE_RESULT:
{
ALOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT");
const int32_t result = mIn.readInt32();
if (!acquireResult) continue;
*acquireResult = result ? NO_ERROR : INVALID_OPERATION;
}
goto finish;
case BR_REPLY:
{
binder_transaction_data tr;
err = mIn.read(&tr, sizeof(tr));
ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");
if (err != NO_ERROR) goto finish;
if (reply) {
if ((tr.flags & TF_STATUS_CODE) == 0) {
reply->ipcSetDataReference(
reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
tr.offsets_size/sizeof(binder_size_t),
freeBuffer, this);
} else {
err = *reinterpret_cast<const status_t*>(tr.data.ptr.buffer);
freeBuffer(NULL,
reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
tr.offsets_size/sizeof(binder_size_t), this);
}
} else {
freeBuffer(NULL,
reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
tr.offsets_size/sizeof(binder_size_t), this);
continue;
}
}
goto finish;
default:
err = executeCommand(cmd);
if (err != NO_ERROR) goto finish;
break;
}
}
finish:
if (err != NO_ERROR) {
if (acquireResult) *acquireResult = err;
if (reply) reply->setError(err);
mLastError = err;
}
return err;
}
①: 将数据写入驱动
②: 读取驱动返回的数据,根据不同的cmd值做出相应回应;
写进去,接下来就读了说明talkWithDriver
是个阻塞方法,点进去看下;
4.7 IPCThreadState::talkWithDriver
status_t IPCThreadState::talkWithDriver(bool doReceive)
{
...
if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR;
bwr.write_consumed = 0;
bwr.read_consumed = 0;
status_t err;
do {
IF_LOG_COMMANDS() {
alog << "About to read/write, write size = " << mOut.dataSize() << endl;
}
#if defined(HAVE_ANDROID_OS)
if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0) ①
err = NO_ERROR;
else
err = -errno;
#else
err = INVALID_OPERATION;
#endif
if (mProcess->mDriverFD <= 0) {
err = -EBADF;
}
IF_LOG_COMMANDS() {
alog << "Finished read/write, write size = " << mOut.dataSize() << endl;
}
} while (err == -EINTR);
...
return err;
}
①: 调用ioctl
函数将数据写进驱动;
看到了吗一个do-while阻塞在这里,其实看过驱动就知道调用ioctl
时驱动层在没有数据时会休眠;
到这里注册服务就完成了,最后是通过BnMediaPlayerService
来提供服务的;
五. 等待服务
服务实现了,也注册了,还有最后一步等待服务请求;
5.1 ProcessState::startThreadPool
void ProcessState::startThreadPool()
{
AutoMutex _l(mLock);
if (!mThreadPoolStarted) {
mThreadPoolStarted = true;
spawnPooledThread(true);
}
}
void ProcessState::spawnPooledThread(bool isMain)
{
if (mThreadPoolStarted) {
String8 name = makeBinderThreadName();
ALOGV("Spawning new pooled thread, name=%s\n", name.string());
sp<Thread> t = new PoolThread(isMain); ①
t->run(name.string());
}
}
class PoolThread : public Thread
{
public:
PoolThread(bool isMain)
: mIsMain(isMain)
{
}
protected:
virtual bool threadLoop()
{
IPCThreadState::self()->joinThreadPool(mIsMain); ②
return false;
}
const bool mIsMain;
};
①: 创建了一个线程池;
②: 也是通过IPCThreadState::self()->joinThreadPool
进入循环;
还记得一开始我们设置过线程最大数吗,每个Service是可能同时被多个client请求提供服务的,忙不过来就只能动态创建线程来对应请求服务;
接下来看下joinThreadPool
做了什么,大胆的猜测下,是不是进入一个循环,接着调用transact
读取数据然后等待数据,来数据后进行解析,然后执行对应的服务;
5.2 IPCThreadState::joinThreadPool
void IPCThreadState::joinThreadPool(bool isMain)
{
LOG_THREADPOOL("**** THREAD %p (PID %d) IS JOINING THE THREAD POOL\n", (void*)pthread_self(), getpid());
mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER);
set_sched_policy(mMyThreadId, SP_FOREGROUND);
status_t result;
do {
processPendingDerefs();
// now get the next command to be processed, waiting if necessary
result = getAndExecuteCommand();
if (result < NO_ERROR && result != TIMED_OUT && result != -ECONNREFUSED && result != -EBADF) {
ALOGE("getAndExecuteCommand(fd=%d) returned unexpected error %d, aborting",
mProcess->mDriverFD, result);
abort();
}
// Let this thread exit the thread pool if it is no longer
// needed and it is not the main process thread.
if(result == TIMED_OUT && !isMain) {
break;
}
} while (result != -ECONNREFUSED && result != -EBADF);
LOG_THREADPOOL("**** THREAD %p (PID %d) IS LEAVING THE THREAD POOL err=%p\n",
(void*)pthread_self(), getpid(), (void*)result);
mOut.writeInt32(BC_EXIT_LOOPER);
talkWithDriver(false);
}
打脸了,只进入了一个循环然后调用了getAndExecuteCommand
方法,来看看该方法做了什么;
5.3 IPCThreadState::getAndExecuteCommand
status_t IPCThreadState::getAndExecuteCommand()
{
status_t result;
int32_t cmd;
result = talkWithDriver(); ①
if (result >= NO_ERROR) {
size_t IN = mIn.dataAvail();
if (IN < sizeof(int32_t)) return result;
cmd = mIn.readInt32();
IF_LOG_COMMANDS() {
alog << "Processing top-level Command: "
<< getReturnString(cmd) << endl;
}
result = executeCommand(cmd); ②
// After executing the command, ensure that the thread is returned to the
// foreground cgroup before rejoining the pool. The driver takes care of
// restoring the priority, but doesn't do anything with cgroups so we
// need to take care of that here in userspace. Note that we do make
// sure to go in the foreground after executing a transaction, but
// there are other callbacks into user code that could have changed
// our group so we want to make absolutely sure it is put back.
set_sched_policy(mMyThreadId, SP_FOREGROUND);
}
return result;
}
①: 前面我们分析过了这是和驱动交互的,它回去读和写;
②: 从读取到的数据中执行相应的code;
5.4 IPCThreadState::executeCommand
status_t IPCThreadState::executeCommand(int32_t cmd)
{
...
case BR_TRANSACTION:
{
binder_transaction_data tr;
result = mIn.read(&tr, sizeof(tr));
ALOG_ASSERT(result == NO_ERROR,
"Not enough command data for brTRANSACTION");
if (result != NO_ERROR) break;
Parcel buffer;
buffer.ipcSetDataReference(
reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
tr.offsets_size/sizeof(binder_size_t), freeBuffer, this);
const pid_t origPid = mCallingPid;
const uid_t origUid = mCallingUid;
const int32_t origStrictModePolicy = mStrictModePolicy;
const int32_t origTransactionBinderFlags = mLastTransactionBinderFlags;
mCallingPid = tr.sender_pid;
mCallingUid = tr.sender_euid;
mLastTransactionBinderFlags = tr.flags;
int curPrio = getpriority(PRIO_PROCESS, mMyThreadId);
if (gDisableBackgroundScheduling) {
if (curPrio > ANDROID_PRIORITY_NORMAL) {
// We have inherited a reduced priority from the caller, but do not
// want to run in that state in this process. The driver set our
// priority already (though not our scheduling class), so bounce
// it back to the default before invoking the transaction.
setpriority(PRIO_PROCESS, mMyThreadId, ANDROID_PRIORITY_NORMAL);
}
} else {
if (curPrio >= ANDROID_PRIORITY_BACKGROUND) {
// We want to use the inherited priority from the caller.
// Ensure this thread is in the background scheduling class,
// since the driver won't modify scheduling classes for us.
// The scheduling group is reset to default by the caller
// once this method returns after the transaction is complete.
set_sched_policy(mMyThreadId, SP_BACKGROUND);
}
}
//ALOGI(">>>> TRANSACT from pid %d uid %d\n", mCallingPid, mCallingUid);
Parcel reply;
status_t error;
if (tr.target.ptr) {
sp<BBinder> b((BBinder*)tr.cookie);
error = b->transact(tr.code, buffer, &reply, tr.flags);
} else {
error = the_context_object->transact(tr.code, buffer, &reply, tr.flags);
}
//ALOGI("<<<< TRANSACT from pid %d restore pid %d uid %d\n",
// mCallingPid, origPid, origUid);
if ((tr.flags & TF_ONE_WAY) == 0) {
LOG_ONEWAY("Sending reply to %d!", mCallingPid);
if (error < NO_ERROR) reply.setError(error);
sendReply(reply, 0);
} else {
LOG_ONEWAY("NOT sending reply to %d!", mCallingPid);
}
mCallingPid = origPid;
mCallingUid = origUid;
mStrictModePolicy = origStrictModePolicy;
mLastTransactionBinderFlags = origTransactionBinderFlags;
IF_LOG_TRANSACTIONS() {
TextOutput::Bundle _b(alog);
alog << "BC_REPLY thr " << (void*)pthread_self() << " / obj "
<< tr.target.ptr << ": " << indent << reply << dedent << endl;
}
}
break;
...
if (result != NO_ERROR) {
mLastError = result;
}
return result;
}
似曾相识的场景,但是我们重点关注下BR_TRANSACTION
, 先回想下用C实现时在接收到BR_TRANSACTION
消息时是什么流程?
①: 将读取的数据转换成binder_transaction_data
类型;
②: 调用形参的函数指针;
③:发送回复数据;
那看看我们这里好像和原来描述的步骤一样,只是执行服务的方式变了,注意看着:
if (tr.target.ptr) {
sp<BBinder> b((BBinder*)tr.cookie);
error = b->transact(tr.code, buffer, &reply, tr.flags);
}
将cookie转换成了BBinder对象,这个值是我们写C时没有用到的,笔者在写4.3节的时候马后炮指的就是这了;
在注册服务的时候binder的服务已经被保存在这了,这里执行transact
方法就相当于执行 BnXXXService::onTransact
的方法,为什么这么说,详见BBinder的transact方法;
5.5 BBinder::transact
status_t BBinder::transact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
data.setDataPosition(0);
status_t err = NO_ERROR;
switch (code) {
case PING_TRANSACTION:
reply->writeInt32(pingBinder());
break;
default:
err = onTransact(code, data, reply, flags);
break;
}
if (reply != NULL) {
reply->setDataPosition(0);
}
return err;
}
onTransact
该方法由具体的派生类复写;
六. 总结
BpxxxService
主要用于封装了一些请求服务的方法供client使用,不需要像写C语言时,客户端只是获得handle,构造数据发送啥的都要自己去实现,现在只要获取到通过interface_cast
就可以将对应的BpBinder
转换成你想要的Service对象(详见3.1),然后就可以调用封装好的方法去请求服务;
BnxxxService
主要封装了提供服务的方法,在收到BR_TRANSACTION
cmd后执行,主要继承于BBinder
类;
PS:
踩个坑,在IServiceManager.cpp中有个BnServiceManager::onTransact方法,ServiceManager的服务是用c实现的,这个方法没有使用;
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。