1

介绍

基于Kubernetes和Jenkins来实现CI/CD。 所有需要跑任务的jenkins slave(pod)通过模版动态创建,当任务执行结束自动删除。

clipboard.png

系统整体架构

clipboard.png

job流程

clipboard.png

环境

kubernets

jenkins配置

jenkins-deployment.yaml
apiVersion: "apps/v1beta1"
kind: "Deployment"
metadata:
  name: "jenkins"
  labels:
    name: "jenkins"
spec:
  replicas: 1
  template:
    metadata:
      name: "jenkins"
      labels:
        name: "jenkins"
    spec:
      containers:
        - name: jenkins
          image: jenkinsci/jenkins:2.154
          imagePullPolicy: IfNotPresent
          volumeMounts:
          - name: jenkins-home
            mountPath: /var/jenkins_home
          env:
            - name: TZ
              value: Asia/Shanghai
          ports:
          - containerPort: 8080 
            name: web
          - containerPort: 50000
            name: agent
      volumes:
        - name: jenkins-home
          nfs:
            path: "/nfs/jenkins/data"
            server: "cpu029.hogpu.cc"
      terminationGracePeriodSeconds: 10
      serviceAccountName: jenkins
jenkins-account.yaml
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: jenkins

---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: jenkins
rules:
- apiGroups: [""]
  resources: ["pods"]
  verbs: ["create","delete","get","list","patch","update","watch"]
- apiGroups: [""]
  resources: ["pods/exec"]
  verbs: ["create","delete","get","list","patch","update","watch"]
- apiGroups: [""]
  resources: ["pods/log"]
  verbs: ["get","list","watch"]
- apiGroups: [""]
  resources: ["secrets"]
  verbs: ["get"]
- apiGroups: [""]
  resources: ["configmap"]
  verbs: ["get"]

---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: RoleBinding
metadata:
  name: jenkins
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: jenkins
subjects:
- kind: ServiceAccount
  name: jenkins
jenkins-service.yaml
kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: jenkins
  name: jenkins
spec:
  type: NodePort
  ports:
    - port: 8080
      name: web
      targetPort: 8080
    - port: 50000
      name: agent
      targetPort: 50000
  selector:
    name: jenkins

说明

说明一下:这里 Service 我们暴漏了端口 8080 和 50000,8080 为访问 Jenkins Server 页面端口,50000 为创建的 Jenkins Slave 与 Master 建立连接进行通信的默认端口,如果不暴露的话,Slave 无法跟 Master 建立连接。这里使用 NodePort 方式暴漏端口,并未指定其端口号,由 Kubernetes 系统默认分配,当然也可以指定不重复的端口号(范围在 30000~32767)

创建jenkins

接下来,通过 kubectl 命令行执行创建 Jenkins Service。

$ kubectl create namespace kubernetes-plugin
$ kubectl config set-context $(kubectl config current-context) --namespace=kubernetes-plugin
$ kubectl create -f jenkins-deployment.yaml
$ kubectl create -f jenkins-account.yaml
$ kubectl create -f jenkins-service.yaml

ps:

创建一个新的 namespace 为 kubernetes-plugin,并且将当前 context 设置为 kubernetes-plugin namespace 这样就会自动切换到该空间下。

查看状态

jianyu.tian@yz-gpu-k8s004 ~]$ kubectl get deployment,svc,pods
NAME             DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
deploy/jenkins   1         1         1            1           1h

NAME          TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)                          AGE
svc/jenkins   NodePort   10.106.235.91   <none>        8080:31051/TCP,50000:30545/TCP   2h

NAME                          READY     STATUS    RESTARTS   AGE
po/jenkins-64564fc5c9-pzlpb   1/1       Running   0          1h

ps:

Jenkins Master 服务已经启动起来了,并且将端口暴漏到 8080:31051,50000:30545,此时可以通过浏览器打开 http://<Cluster_IP>:30645 访问 Jenkins 页面了。

jenkins web界面初始化

1.主要对jenkins-plugin插件做说明

安装完毕后,点击 “系统管理” —> “系统设置” —> “新增一个云” —> 选择 “Kubernetes”,然后填写 Kubernetes 和 Jenkins 配置信息。

clipboard.png

ps:
Name 处默认为 kubernetes,也可以修改为其他名称,如果这里修改了,下边在执行 Job 时指定 podTemplate() 参数 cloud 为其对应名称,否则会找不到,cloud 默认值取:kubernetes
Kubernetes URL 处我填写了 https://kubernetes.default.sv... 这里我填写了 Kubernetes Service 对应的 DNS 记录,通过该 DNS 记录可以解析成该 Service 的 Cluster IP,或者直接填写外部 Kubernetes 的地址 https://&lt;ClusterIP>:<Ports>。
Jenkins URL 处我填写了 http://jenkins.kubernetes-plugin:8080,跟上边类似,也是使用 Jenkins Service 对应的 DNS 记录,不过要指定为 8080 端口,因为我们设置暴漏 8080 端口。同时也可以用 http://&lt;ClusterIP>:<Node_Port>

配置完毕,可以点击 “Test Connection” 按钮测试是否能够连接的到 Kubernetes,如果显示 Connection test successful 则表示连接成功,配置没有问题。

测试

创建一个 Pipeline 类型 Job:

pipeline {
    agent any
  //并行操作
    stages {
        stage("test_all") {
            parallel {
                stage("python3-cuda9.2") {
                    agent {
                        kubernetes {
                            label 'mxnet-python3-cuda9'
                            yaml """
apiVersion: "v1"
kind: "Pod"
metadata:
  labels:
    name: "mxnet-python3-cuda9"
spec:
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: hobot.workas
            operator: In
            values:
            - gpu
          - key: kubernetes.io/nvidia-gpu-name
            operator: In
            values:
            - TITAN_V
  containers:
  - name: mxnetone
    image: docker.hobot.cc/dlp/mxnetci:runtime-py3.6-cudnn7.3-cuda9.2-centos7
    imagePullPolicy: Always
    resources:
      limits:
        nvidia.com/gpu: 1
"""
                }
            }
                   stages {
                        stage("拉取代码") {
                            steps {
                                container("mxnetone") {
                                    checkout(
                                        [
                                            $class: 'GitSCM', 
                                            branches: [[name: 'nnvm']], 
                                            browser: [$class: 'Phabricator', repo: 'rMXNET', repoUrl: ''], 
                                            doGenerateSubmoduleConfigurations: false, extensions: [[$class: 'SubmoduleOption', disableSubmodules: false, parentCredentials: true, recursiveSubmodules: true, reference: '', trackingSubmodules: false]],
                                            submoduleCfg: [],
                                            userRemoteConfigs: [[credentialsId: 'zhaoming_private', url: '']]
                                        ]
                                    )                   
                                }
                            }
                        }
                        stage("编译") {
                            steps {
                                container("mxnetone") {
                                    sh """
                                    nvidia-smi
                                    source /root/.bashrc
                                    make deps
                                    echo -e "USE_PROFILER=1\nUSE_GLOG=0\nUSE_HDFS=0" >> ./make/config.mk
                                    sed -i "s#USE_CUDA_PATH = /usr/local/cuda-8.0#USE_CUDA_PATH = /usr/local/cuda-9.2#g" ./make/config.mk
                                    make lint
                                    make -j 12
                                    ln -s /home/data ./
                                    make test |  tee unittest.log
                                    """
                                }
                            }
                        }
                        stage("单元测试") {
                            steps {
                              container("mxnetone") {
                                    sh """
                                    cp -rf python/mxnet ./
                                    cp -f lib/libmxnet.so mxnet/
                                    echo "-------Running tests under Python3-------"
                                    python3 -V
                                    python3 `which nosetests` tests/python/train
                                    python3 `which nosetests` -v -d tests/python/unittest
                                       """
                                }
                            }
                        }
                    }
                }

                stage("python2-cuda9.2") {
                    agent {
                        kubernetes {
                            label 'mxnet-python2-cuda9'
                            yaml """
apiVersion: "v1"
kind: "Pod"
metadata:
  labels:
    name: "mxnet-python2-cuda9"
spec:
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: hobot.workas
            operator: In
            values:
            - gpu
          - key: kubernetes.io/nvidia-gpu-name
            operator: In
            values:
            - TITAN_V
  containers:
  - name: mxnettwo
    image: docker.hobot.cc/dlp/mxnetci:runtime-cudnn7.3-cuda9.2-centos7
    imagePullPolicy: Always
    resources:
      limits:
        nvidia.com/gpu: 1
"""
            }
        }
                     stages {
                        stage("拉取代码") {
                            steps {
                                container("mxnettwo") {
                                    checkout(
                                        [
                                            $class: 'GitSCM', 
                                            branches: [[name: 'nnvm']], 
                                            browser: [$class: 'Phabricator', repo: 'rMXNET', repoUrl: ''], 
                                            doGenerateSubmoduleConfigurations: false, extensions: [[$class: 'SubmoduleOption', disableSubmodules: false, parentCredentials: true, recursiveSubmodules: true, reference: '', trackingSubmodules: false]],
                                            submoduleCfg: [],
                                            userRemoteConfigs: [[credentialsId: 'zhaoming_private', url: '']]
                                        ]
                                    )
                                }
                            }
                        }
                        stage("编译") {
                            steps {
                                container("mxnettwo") {
                                    sh """
                                    nvidia-smi
                                    pip2 install numpy==1.14.3 -i https://mirrors.aliyun.com/pypi/simple/
                                    source /root/.bashrc
                                    make deps
                                    echo -e "USE_PROFILER=1\nUSE_GLOG=0\nUSE_HDFS=0" >> ./make/config.mk
                                    sed -i "s#USE_CUDA_PATH = /usr/local/cuda-8.0#USE_CUDA_PATH = /usr/local/cuda-9.2#g" ./make/config.mk
                                    make lint
                                    make -j 12
                                    ln -s /home/data ./
                                    make test |  tee unittest.log
                                    """
                                }
                            }
                        }
                        stage("单元测试") {
                            steps {
                              container("mxnettwo") {
                                    sh """
                                    cp -rf python/mxnet ./
                                    cp -f lib/libmxnet.so mxnet/
                                    echo "-------Running tests under Python2-------"
                                    python2 -V
                                    python2 `which nosetests` tests/python/train
                                    python2 `which nosetests` -v -d tests/python/unittest
                                       """
                                }
                            }
                        }
                    }
                }
            }
        }
    }
}

clipboard.png

文档

https://github.com/jenkinsci/...


禁止进入i
75 声望15 粉丝

不想做开发的运维不是一名好的架构师,学习无止境。


« 上一篇
kafka集群搭建