笔试题 一
统计对象中某个成员变量的访问次数
遗失的关键字
- mutable 是为了突破 const 函数的限制而设计的
- mutable 成员变量将永远处于可改变的状态
- mutable 在实际的项目开发中被严谨滥用
mutable 的深入分析
- mutable 成员变量破坏了只读对象的内部状态
- const 成员函数保证只读对象的状态不变性
- mutable 成员变量的出现无法保证状态不变性
编程实验: 成员变量的访问统计
mutable 的实现:
#include <iostream>
#include <string>
using namespace std;
class Test
{
private:
int m_value;
mutable int m_count; // 注意这里!
public:
Test(int value = 0)
{
m_value = value ;
m_count = 0;
}
int getValue() const
{
m_count ++;
return m_value;
}
void setValue(int value)
{
m_count ++;
m_value = value;
}
int getCount() const
{
return m_count;
}
};
int main()
{
Test t;
t.setValue(10);
cout << "t.m_value = " << t.getValue() << endl;
cout << "t.m_vount = " << t.getCount() << endl;
const Test ct(200);
cout << "ct.m_value = " << ct.getValue() << endl;
cout << "ct.m_vount = " << ct.getCount() << endl;
return 0;
}
输出:
t.m_value = 10
t.m_vount = 2
ct.m_value = 200
ct.m_vount = 1
统计方式的改进:
#include <iostream>
#include <string>
using namespace std;
class Test
{
private:
int m_value;
int * const m_pCount; // 注意这里!
public:
Test(int value = 0) : m_pCount(new int(0))
{
m_value = 0;
}
int getValue() const
{
*m_pCount = *m_pCount + 1;
return m_value;
}
void setValue(int value)
{
*m_pCount = *m_pCount + 1;
m_value = value;
}
int getCount() const
{
return *m_pCount;
}
};
int main()
{
Test t;
t.setValue(10);
cout << "t.m_value = " << t.getValue() << endl;
cout << "t.m_vount = " << t.getCount() << endl;
const Test ct(200);
cout << "ct.m_value = " << ct.getValue() << endl;
cout << "ct.m_vount = " << ct.getCount() << endl;
return 0;
}
输出:
t.m_value = 10
t.m_vount = 2
ct.m_value = 0
ct.m_vount = 1
分析:
int * const m_pCount; ==> 定义指针常量
*m_pCount = *m_pCount + 1; ==> 修改指针常量指向的内存空间处的值
==> 对象内部状态没有发生改变
面试题 二
new 关键字创建出来的对象位于什么地方呢?
- 堆(默认)
- 栈
- 全局数据区
被忽略的事实
- new / delete 的本质是 C++ 预定义的
操作符
C++ 对这两个操作符做了严格的行为定义
new :
- 获取足够大的内存空间(默认为堆空间)
- 在获取的空间中调用构造函数创建对象
delete :
- 调用析构函数销毁对象
- 归还对象所占用的空间(默认为堆空间)
在 C++ 中能够重载 new / delete 操作符
- 全局重载(不推荐)
- 局部重载(针对具体类进行重载)
重载 new / delete 的意义在于改变动态对象创建时的内存分布方式
- new / delete 的重载方式
默认为静态成员函数
// static member function
void* operator new(unsigned int size)
{
void* ret = NULL;
/** ret point to allocated memory */
return ret;
}
// static member function
void operator delete(void* p)
{
/** free the memory which is pointed by p */
}
编程实验: 静态存储区中创建对象
#include <iostream>
#include <string>
using namespace std;
class Test
{
private:
static const unsigned int COUNT = 4;
static unsigned char c_buffer[];
static unsigned char c_map[];
int m_value;
public:
void* operator new(unsigned int size)
{
void* ret = NULL;
for(int i=0; i<COUNT; i++)
{
if( !c_map[i] )
{
c_map[i] = 1;
ret = c_buffer + i * sizeof(Test);
cout << "Succeed to allocate memory: " << ret << endl;
break;
}
}
return ret;
}
void operator delete (void* p)
{
if( p != NULL )
{
unsigned char* mem = reinterpret_cast<unsigned char*>(p);
int index = (mem - c_buffer) / sizeof(Test);
int flag = (mem - c_buffer) % sizeof(Test);
if( (flag == 0) && (0 <= index) && (index < COUNT) )
{
c_map[index] = 0;
cout << "succeed to free memory: " << p << endl;
}
}
}
};
unsigned char Test::c_buffer[Test::COUNT] = {0};
unsigned char Test::c_map[Test::COUNT] = {0};
int main()
{
cout << "===== Test Single Object ====" << endl;
Test* pt = new Test;
delete pt;
cout << "==== Test Object Array ====" << endl;
Test* pa[5] = {0};
for(int i=0; i<5; i++)
{
pa[i] = new Test;
cout << "pa[" << i << "] = " << pa[i] << endl;
}
for(int i=0; i<5; i++)
{
cout << "delete " << pa[i] << endl;
delete pa[i];
}
return 0;
}
输出:
===== Test Single Object ====
Succeed to allocate memory: 0x804a0d4
succeed to free memory: 0x804a0d4
==== Test Object Array ====
Succeed to allocate memory: 0x804a0d4
pa[0] = 0x804a0d4
Succeed to allocate memory: 0x804a0d8
pa[1] = 0x804a0d8
Succeed to allocate memory: 0x804a0dc
pa[2] = 0x804a0dc
Succeed to allocate memory: 0x804a0e0
pa[3] = 0x804a0e0
pa[4] = 0
delete 0x804a0d4
succeed to free memory: 0x804a0d4
delete 0x804a0d8
succeed to free memory: 0x804a0d8
delete 0x804a0dc
succeed to free memory: 0x804a0dc
delete 0x804a0e0
succeed to free memory: 0x804a0e0
delete 0
如何在指定的地址上创建C++对象?
解决方案
- 在类中重载 new / delete 操作符
- 在 new 的操作符重载函数中返回指定的地址
- 在 delete 操作符重载中标记对应的地址可用
编程实验: 自定义动态对象的存储空间
#include <iostream>
#include <string>
#include <cstdlib>
using namespace std;
class Test
{
private:
static unsigned int c_count;
static unsigned char* c_buffer;
static unsigned char* c_map;
int m_value;
public:
static bool SetMemorySource(unsigned char* memory, unsigned int size)
{
bool ret = false;
c_count = size / sizeof(Test);
ret = (c_count && (c_map = reinterpret_cast<unsigned char*>(calloc(c_count, sizeof(unsigned char)))));
if( ret )
{
c_buffer = memory;
}
else
{
free(c_map);
c_map = NULL;
c_buffer = NULL;
c_count = 0;
}
return ret;
}
void* operator new(unsigned int size)
{
void* ret = NULL;
if( c_count > 0 )
{
for(int i=0; i<c_count; i++)
{
if( !c_map[i] )
{
c_map[i] = 1;
ret = c_buffer + i * sizeof(Test);
cout << "Succeed to allocate memory: " << ret << endl;
break;
}
}
}
else
{
ret = malloc(size);
}
return ret;
}
void operator delete (void* p)
{
if( p != NULL )
{
if( c_count > 0 )
{
unsigned char* mem = reinterpret_cast<unsigned char*>(p);
int index = (mem - c_buffer) / sizeof(Test);
int flag = (mem - c_buffer) % sizeof(Test);
if( (flag == 0) && (0 <= index) && (index < c_count) )
{
c_map[index] = 0;
cout << "succeed to free memory: " << p << endl;
}
}
else
{
free(p);
}
}
}
};
unsigned int Test::c_count = NULL;
unsigned char* Test::c_buffer = NULL;
unsigned char* Test::c_map = NULL;
int main()
{
unsigned char buffer[12] = {0};
Test::SetMemorySource(buffer, sizeof(buffer));
cout << "===== Test Single Object ====" << endl;
Test* pt = new Test;
delete pt;
cout << "==== Test Object Array ====" << endl;
Test* pa[5] = {0};
for(int i=0; i<5; i++)
{
pa[i] = new Test;
cout << "pa[" << i << "] = " << pa[i] << endl;
}
for(int i=0; i<5; i++)
{
cout << "delete " << pa[i] << endl;
delete pa[i];
}
return 0;
}
输出:
===== Test Single Object ====
Succeed to allocate memory: 0xbfbbacb0
succeed to free memory: 0xbfbbacb0
==== Test Object Array ====
Succeed to allocate memory: 0xbfbbacb0
pa[0] = 0xbfbbacb0
Succeed to allocate memory: 0xbfbbacb4
pa[1] = 0xbfbbacb4
Succeed to allocate memory: 0xbfbbacb8
pa[2] = 0xbfbbacb8
pa[3] = 0
pa[4] = 0
delete 0xbfbbacb0
succeed to free memory: 0xbfbbacb0
delete 0xbfbbacb4
succeed to free memory: 0xbfbbacb4
delete 0xbfbbacb8
succeed to free memory: 0xbfbbacb8
delete 0
delete 0
被忽略的事实
new[] / delete[] 与 new / delete 完全不同
- 动态对象数组创建通过 new[] 完成
- 动态对象数组的销毁通过 delete[] 完成
- new[] / delete[] 能够被重载,进而改变内存管理方式
new[] / delete[] 的重载方式
默认为静态成员函数
// static member function
void* operator new[] (unsigned int size)
{
return malloc(size);
}
// static member function
void operator delete[] (void* p)
{
free(p);
}
注意事项
new[] 实际需要返回的内存空间可能比期望的多
- 对象数组占用的内存中需要保存数组信息(数组长度)
- 数组信息用于确定构造函数和析构函数的调用次数
编程实验: 动态数组的内存管理
#include <iostream>
#include <string>
#include <cstdlib>
using namespace std;
class Test
{
private:
int m_value;
public:
Test()
{
m_value = 0;
}
~Test()
{
}
void* operator new(unsigned int size)
{
cout << "operator new: " << size << endl;
return malloc(size);
}
void operator delete (void* p)
{
cout << "operator delete: " << p << endl;
free(p);
}
void* operator new[](unsigned int size)
{
cout << "operator new[]: " << size << endl;
return malloc(size);
}
void operator delete[] (void* p)
{
cout << "operator delete[]: " << p << endl;
free(p);
}
};
int main()
{
Test* pt = NULL;
pt = new Test;
delete pt;
pt = new Test[5];
delete[] pt;
return 0;
}
输出:
operator new: 4
operator delete: 0x9e3c008
operator new[]: 24 ;注意这里!
operator delete[]: 0x9e3c018
小结
- new / delete 的本质为操作符
- 可以通过全局函数重载 new / delete (不推荐)
- 可以针对具体的类重载 new / delete
- new[] / delete[] 与 new / delete 完全不同
- new[] / delete[] 也是可以被重载的操作符
- new[] 返回的内存空间可能比期望的要多
以上内容参考狄泰软件学院系列课程,请大家保护原创!
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。