package com.java.design.java8.Stream.StreamDetail.BaseStreamDetail;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;
import java.util.Arrays;
import java.util.List;
import java.util.function.Consumer;
import java.util.function.IntConsumer;
/**
* @author 陈杨
*/
@SpringBootTest
@RunWith(SpringRunner.class)
public class SpliteratorDetail {
private IntConsumer intConsumer;
private Consumer consumer;
private List<String> list;
@Before
public void init() {
intConsumer = System.out::println;
consumer = System.out::println;
list = Arrays.asList("Kirito", "Asuna", "Sinon", "Yuuki", "Alice");
}
private void action(IntConsumer intConsumer) {
intConsumer.accept(100);
}
@Test
public void testSpliteratorDetail() {
一、流的创建--源(集合)
// 一、流的创建--源(集合)
/*
Collection集合默认方法 list.stream()
default
Stream<E> stream () {
return StreamSupport.stream(spliterator(), false);
}
@Override
default
Spliterator<E> spliterator () {
return Spliterators.spliterator(this, 0);
}
public static <T> Spliterator<T> spliterator(Collection<? extends T> c,
int characteristics) {
return new IteratorSpliterator<>(Objects.requireNonNull(c),
characteristics);
}*/
// Collector 接口 与 Collectors 静态类实现
// Spliterator 接口 与 Spliterators 静态类实现
二、Spliterator 接口
// 二、Spliterator 接口
// Spliterator 接口
// 对数据源中元素进行遍历或分区
// An object for traversing and partitioning elements of a source.
// 延迟绑定数据源
// 绑定时机:首次遍历、切分、查询大小 而不是在创建时
// A <em>late-binding</em> Spliterator binds to the source of elements at the
// point of first traversal, first split, or first query for estimated size,
// rather than at the time the Spliterator is created.
// 非延迟绑定数据源
// 绑定时机:Spliterator创建时 或Spliterator的方法首次调用
// A Spliterator that is not <em>late-binding</em> binds to the source of elements
// at the point of construction or first invocation of any method.
// Spliterator 与 Iterator 的区别:
//
// Spliterator 优势:通过分解和单元素迭代 支持串行与并行
// 比Iterator迭代通过hasNext与next性能更好
// Spliterators, like {@code Iterator}s, are for traversing the elements of a source.
// The Spliterator API was designed to support efficient parallel traversal
// in addition to sequential traversal, by supporting decomposition as well as single-element iteration.
// In addition, the protocol for accessing elements via a Spliterator is designed to impose
// smaller per-element overhead than {@code Iterator}, and to avoid the inherent
// race involved in having separate methods for {@code hasNext()} and {@code next()}.
三、Spliterator特性值
/* public interface Spliterator<T> {
// 三、Spliterator特性值
* Characteristic value signifying that an encounter order is defined for
* elements. If so, this Spliterator guarantees that method
* {@link #trySplit} splits a strict prefix of elements, that method 分割前后对元素加严格前缀
* {@link #tryAdvance} steps by one element in prefix order, and that 按照元素的顺序前缀遍历
* {@link #forEachRemaining} performs actions in encounter order. 对剩余元素按照相遇顺序执行action
*
* <p>A {@link Collection} has an encounter order if the corresponding
* {@link Collection#iterator} documents an order. If so, the encounter
* order is the same as the documented order. Otherwise, a collection does
* not have an encounter order.
* 集合是有序的,则文档是有序的
* 集合是无序的,则文档是无序的
*
* @apiNote Encounter order is guaranteed to be ascending index order for
* any {@link List}. But no order is guaranteed for hash-based collections
* such as {@link HashSet}. Clients of a Spliterator that reports
* {@code ORDERED} are expected to preserve ordering constraints in
* non-commutative parallel computations.
* 基于索引升序的List 排序-->有序
* 基于Hash散列的HashSet 排序-->无序
* 非并发情况下期望要保留 有序集合中 元素的顺序 以返还给客户端调用者
public static final int ORDERED = 0x00000010;
* Characteristic value signifying that, for each pair of
* encountered elements {@code x, y}, {@code !x.equals(y)}. This
* applies for example, to a Spliterator based on a {@link Set}.
基于Set的去重DISTINCT
public static final int DISTINCT = 0x00000001;
* Characteristic value signifying that encounter order follows a defined
* sort order. If so, method {@link #getComparator()} returns the associated
* Comparator, or {@code null} if all elements are {@link Comparable} and
* are sorted by their natural ordering.
*
* <p>A Spliterator that reports {@code SORTED} must also report
* {@code ORDERED}.
* 已排序的一定是有序的
*
* @apiNote The spliterators for {@code Collection} classes in the JDK that
* implement {@link NavigableSet} or {@link SortedSet} report {@code SORTED}.
* 如果基于集合的spliterator实现了NavigableSet或SortedSet接口 则为SORTED
public static final int SORTED = 0x00000004;
* Characteristic value signifying that the value returned from
* {@code estimateSize()} prior to traversal or splitting represents a
* finite size that, in the absence of structural source modification,
* represents an exact count of the number of elements that would be
* encountered by a complete traversal.
* 源中元素个数有限 源元素结构特性未被修改 estimateSize能在完整遍历过程中 精准计算
public static final int SIZED = 0x00000040;
* Characteristic value signifying that the source guarantees that
* encountered elements will not be {@code null}. (This applies,
* for example, to most concurrent collections, queues, and maps.)
*
源中元素都不为null
public static final int NONNULL = 0x00000100;
* Characteristic value signifying that the element source cannot be
* structurally modified; that is, elements cannot be added, replaced, or
* removed, so such changes cannot occur during traversal. A Spliterator
* that does not report {@code IMMUTABLE} or {@code CONCURRENT} is expected
* to have a documented policy (for example throwing
* {@link ConcurrentModificationException}) concerning structural
* interference detected during traversal.
* 源中元素结构不可变
* 源中元素在遍历过程中 不能被 添加 替换(包含修改) 删除
* 如果遍历时 发送元素结构发生改变 则不能表示为IMMUTABLE或CONCURRENT 抛出ConcurrentModificationException
public static final int IMMUTABLE = 0x00000400;
* Characteristic value signifying that the element source may be safely
* concurrently modified (allowing additions, replacements, and/or removals)
* by multiple threads without external synchronization. If so, the
* Spliterator is expected to have a documented policy concerning the impact
* of modifications during traversal.
*
* <p>A top-level Spliterator should not report both {@code CONCURRENT} and
* {@code SIZED}, since the finite size, if known, may change if the source
* is concurrently modified during traversal. Such a Spliterator is
* inconsistent and no guarantees can be made about any computation using
* that Spliterator. Sub-spliterators may report {@code SIZED} if the
* sub-split size is known and additions or removals to the source are not
* reflected when traversing.
*
* <p>A top-level Spliterator should not report both {@code CONCURRENT} and
* {@code IMMUTABLE}, since they are mutually exclusive. Such a Spliterator
* is inconsistent and no guarantees can be made about any computation using
* that Spliterator. Sub-spliterators may report {@code IMMUTABLE} if
* additions or removals to the source are not reflected when traversing.
*
* @apiNote Most concurrent collections maintain a consistency policy
* guaranteeing accuracy with respect to elements present at the point of
* Spliterator construction, but possibly not reflecting subsequent
* additions or removals.
* 顶层的Spliterator不能同时拥有CONCURRENT和SIZED特性
* 并发时可能存在对源进行添加、替换(修改)、删除 以改变元素个数
* 顶层的Spliterator不能同时拥有CONCURRENT和IMMUTABLE特性
* 这两种特性是互斥的
* 大多数并发集合都保持一致性策略,以确保在拆分器构造点存在的元素的准确性,但可能不反映随后的添加或删除
public static final int CONCURRENT = 0x00001000;
* Characteristic value signifying that all Spliterators resulting from
* {@code trySplit()} will be both {@link #SIZED} and {@link #SUBSIZED}.
* (This means that all child Spliterators, whether direct or indirect, will
* be {@code SIZED}.)
*
* <p>A Spliterator that does not report {@code SIZED} as required by
* {@code SUBSIZED} is inconsistent and no guarantees can be made about any
* computation using that Spliterator.
*
* @apiNote Some spliterators, such as the top-level spliterator for an
* approximately balanced binary tree, will report {@code SIZED} but not
* {@code SUBSIZED}, since it is common to know the size of the entire tree
* but not the exact sizes of subtrees.
* 顶层二叉树是SIZED 但不是SUBSIZED 因为不知道子树的大小
*
从trySplit返回的子Spliterator都是SIZED 和 SUBSIZED
public static final int SUBSIZED = 0x00004000;
四、Spliterator方法
// 四、Spliterator方法
* If a remaining element exists, performs the given action on it,
* returning {@code true}; else returns {@code false}. If this
* Spliterator is {@link #ORDERED} the action is performed on the
* next element in encounter order. Exceptions thrown by the
* action are relayed to the caller.
*
尝试遍历:
如果有下一个元素 就对其执行action
如果是有序的 按照元素相遇顺序 对其执行action
如果有异常 将异常信息返回给方法调用者
tryAdvance() 完成了 Iterator的hasNext()与next()
boolean tryAdvance(Consumer<? super T> action);
* Performs the given action for each remaining element, sequentially in
* the current thread, until all elements have been processed or the action
* throws an exception. If this Spliterator is {@link #ORDERED}, actions
* are performed in encounter order. Exceptions thrown by the action
* are relayed to the caller.
按顺序遍历剩余元素 并对每个元素执行action 直到遍历结束 将异常信息返回给方法调用者
default void forEachRemaining(Consumer<? super T> action) {
do { } while (tryAdvance(action));
}
* If this spliterator can be partitioned, returns a Spliterator
* covering elements, that will, upon return from this method, not
* be covered by this Spliterator.
*
* <p>If this Spliterator is {@link #ORDERED}, the returned Spliterator
* must cover a strict prefix of the elements.
*
* <p>Unless this Spliterator covers an infinite number of elements,
* repeated calls to {@code trySplit()} must eventually return {@code null}.
* Upon non-null return:
* <ul>
* <li>the value reported for {@code estimateSize()} before splitting,
* must, after splitting, be greater than or equal to {@code estimateSize()}
* for this and the returned Spliterator; and</li>
* <li>if this Spliterator is {@code SUBSIZED}, then {@code estimateSize()}
* for this spliterator before splitting must be equal to the sum of
* {@code estimateSize()} for this and the returned Spliterator after
* splitting.</li>
* </ul>
*
* <p>This method may return {@code null} for any reason,
* including emptiness, inability to split after traversal has
* commenced, data structure constraints, and efficiency
* considerations.
*
* @apiNote
* An ideal {@code trySplit} method efficiently (without
* traversal) divides its elements exactly in half, allowing
* balanced parallel computation. Many departures from this ideal
* remain highly effective; for example, only approximately
* splitting an approximately balanced tree, or for a tree in
* which leaf nodes may contain either one or two elements,
* failing to further split these nodes. However, large
* deviations in balance and/or overly inefficient {@code
* trySplit} mechanics typically result in poor parallel
* performance.
尝试对Spliterator中元素进行trySplit
若能进行拆分,则返回一个新的Spliterator对象 装载已分割的元素
如果分割前有序,分割后也是有序的
分割结果不为null:
进行有限分割后 最终能得到非null元素
分割结果为null:
对有限元素个数的分割:进行无限分割
分割前元素个数为null
遍历开始后无法拆分 数据结构约束 性能考量
Spliterator<T> trySplit();
* Returns an estimate of the number of elements that would be
* encountered by a {@link #forEachRemaining} traversal, or returns {@link
* Long#MAX_VALUE} if infinite, unknown, or too expensive to compute.
*
* <p>If this Spliterator is {@link #SIZED} and has not yet been partially
* traversed or split, or this Spliterator is {@link #SUBSIZED} and has
* not yet been partially traversed, this estimate must be an accurate
* count of elements that would be encountered by a complete traversal.
* Otherwise, this estimate may be arbitrarily inaccurate, but must decrease
* as specified across invocations of {@link #trySplit}.
*
* @apiNote
* Even an inexact estimate is often useful and inexpensive to compute.
* For example, a sub-spliterator of an approximately balanced binary tree
* may return a value that estimates the number of elements to be half of
* that of its parent; if the root Spliterator does not maintain an
* accurate count, it could estimate size to be the power of two
* corresponding to its maximum depth.
估算元素数量(即将遍历的元素个数)
如果元素数量无限 未知 或计算成本很昂贵 返回Long.Max_Value
如果Spliterator是一个SIZED或SUBSIZED estimate则是完整遍历所需要的值(accurate精确)
long estimateSize();
* Convenience method that returns {@link #estimateSize()} if this
* Spliterator is {@link #SIZED}, else {@code -1}.
characteristic.SIZED -->返回确定的大小 否则为 -1L
default long getExactSizeIfKnown() {
return (characteristics() & SIZED) == 0 ? -1L : estimateSize();
}
* Returns a set of characteristics of this Spliterator and its
* elements. The result is represented as ORed values from {@link
* #ORDERED}, {@link #DISTINCT}, {@link #SORTED}, {@link #SIZED},
* {@link #NONNULL}, {@link #IMMUTABLE}, {@link #CONCURRENT},
* {@link #SUBSIZED}. Repeated calls to {@code characteristics()} on
* a given spliterator, prior to or in-between calls to {@code trySplit},
* should always return the same result.
*
* <p>If a Spliterator reports an inconsistent set of
* characteristics (either those returned from a single invocation
* or across multiple invocations), no guarantees can be made
* about any computation using this Spliterator.
*
* @apiNote The characteristics of a given spliterator before splitting
* may differ from the characteristics after splitting. For specific
* examples see the characteristic values {@link #SIZED}, {@link #SUBSIZED}
* and {@link #CONCURRENT}.
*
* @return a representation of characteristics
返回Spliterator与其元素的一个特性值标识
在分割期间或之前 其元素的特性不变
分割前后若元素的特性发生了变更 对其进行计算行为是不能受到保证的
int characteristics();
* Returns {@code true} if this Spliterator's {@link
* #characteristics} contain all of the given characteristics.
判断是否包含此元素特性
default boolean hasCharacteristics(int characteristics) {
return (characteristics() & characteristics) == characteristics;
}
* If this Spliterator's source is {@link #SORTED} by a {@link Comparator},
* returns that {@code Comparator}. If the source is {@code SORTED} in
* {@linkplain Comparable natural order}, returns {@code null}. Otherwise,
* if the source is not {@code SORTED}, throws {@link IllegalStateException}.
如果source是有序的:
如果是按照比较器进行排序 则返回该比较器
如果是Comparable natural order 则返回null
如果source是无序的 抛出IllegalStateException异常
default Comparator<? super T> getComparator() {
throw new IllegalStateException();
}
* A Spliterator specialized for primitive values.
* 针对于原生类型值的特化分割器
*
* @param <T> the type of elements returned by this Spliterator.
* The type must be a wrapper type for a primitive type,
* such as {@code Integer} for the primitive {@code int} type.
* @param <T_CONS> the type of primitive consumer. The type must be a
* primitive specialization of {@link java.util.function.Consumer} for
* {@code T}, such as {@link java.util.function.IntConsumer} for {@code Integer}.
* @param <T_SPLITR> the type of primitive Spliterator. The type must be
* a primitive specialization of Spliterator for {@code T}, such as
* {@link Spliterator.OfInt} for {@code Integer}.
*
* @see Spliterator.OfInt
* @see Spliterator.OfLong
* @see Spliterator.OfDouble
* @since 1.8
* T Spliterator返回的元素类型:原生包装类型
* T_CONS primitive consumer :java.util.function.IntConsumer对Integer的原生特化
* T_SPLITR primitive Spliterator :Spliterator.OfInt对Integer的原生特化
*
public interface OfPrimitive<T, T_CONS, T_SPLITR extends Spliterator.OfPrimitive<T, T_CONS, T_SPLITR>>
extends Spliterator<T> {
@Override
T_SPLITR trySplit();
@SuppressWarnings("overloads")
boolean tryAdvance(T_CONS action);
@SuppressWarnings("overloads")
default void forEachRemaining(T_CONS action) {
do { } while (tryAdvance(action));
}
}
* A Spliterator specialized for {@code int} values.
* @since 1.8
public interface OfInt extends OfPrimitive<Integer, IntConsumer, OfInt> {
@Override
OfInt trySplit();
@Override
boolean tryAdvance(IntConsumer action);
@Override
default void forEachRemaining(IntConsumer action) {
do { } while (tryAdvance(action));
}
五、Consumer 与 IntConsumer、LongConsumer、DoubleConsumer
五、Consumer 与 IntConsumer、LongConsumer、DoubleConsumer
// Consumer 与 IntConsumer 为什么能进行强制类型转换?
// Consumer 与 IntConsumer 之间没有继承关系 层次上无关系
// Consumer 与 IntConsumer 当传入的参数是整型int,Integer时 会自动进行装箱拆箱
// ((IntConsumer) action::accept) 是Lambda表达式
// Lambda表达式 是一种匿名函数 没有方法声明 具有上下文自动推测类型功能
* {@inheritDoc}
* @implSpec
* If the action is an instance of {@code IntConsumer} then it is cast
* to {@code IntConsumer} and passed to
* {@link #tryAdvance(java.util.function.IntConsumer)}; otherwise
* the action is adapted to an instance of {@code IntConsumer}, by
* boxing the argument of {@code IntConsumer}, and then passed to
* {@link #tryAdvance(java.util.function.IntConsumer)}.
@Override
default boolean tryAdvance(Consumer<? super Integer> action) {
if (action instanceof IntConsumer) {
return tryAdvance((IntConsumer) action);
}
else {
if (Tripwire.ENABLED)
Tripwire.trip(getClass(),
"{0} calling Spliterator.OfInt.tryAdvance((IntConsumer) action::accept)");
return tryAdvance((IntConsumer) action::accept);
}
}
* {@inheritDoc}
* @implSpec
* If the action is an instance of {@code IntConsumer} then it is cast
* to {@code IntConsumer} and passed to
* {@link #forEachRemaining(java.util.function.IntConsumer)}; otherwise
* the action is adapted to an instance of {@code IntConsumer}, by
* boxing the argument of {@code IntConsumer}, and then passed to
* {@link #forEachRemaining(java.util.function.IntConsumer)}.
@Override
default void forEachRemaining(Consumer<? super Integer> action) {
if (action instanceof IntConsumer) {
forEachRemaining((IntConsumer) action);
}
else {
if (Tripwire.ENABLED)
Tripwire.trip(getClass(),
"{0} calling Spliterator.OfInt.forEachRemaining((IntConsumer) action::accept)");
forEachRemaining((IntConsumer) action::accept);
}
}
}
* A Spliterator specialized for {@code long} values.
* @since 1.8
public interface OfLong extends OfPrimitive<Long, LongConsumer, OfLong> {
@Override
OfLong trySplit();
@Override
boolean tryAdvance(LongConsumer action);
@Override
default void forEachRemaining(LongConsumer action) {
do { } while (tryAdvance(action));
}
* {@inheritDoc}
* @implSpec
* If the action is an instance of {@code LongConsumer} then it is cast
* to {@code LongConsumer} and passed to
* {@link #tryAdvance(java.util.function.LongConsumer)}; otherwise
* the action is adapted to an instance of {@code LongConsumer}, by
* boxing the argument of {@code LongConsumer}, and then passed to
* {@link #tryAdvance(java.util.function.LongConsumer)}.
@Override
default boolean tryAdvance(Consumer<? super Long> action) {
if (action instanceof LongConsumer) {
return tryAdvance((LongConsumer) action);
}
else {
if (Tripwire.ENABLED)
Tripwire.trip(getClass(),
"{0} calling Spliterator.OfLong.tryAdvance((LongConsumer) action::accept)");
return tryAdvance((LongConsumer) action::accept);
}
}
* {@inheritDoc}
* @implSpec
* If the action is an instance of {@code LongConsumer} then it is cast
* to {@code LongConsumer} and passed to
* {@link #forEachRemaining(java.util.function.LongConsumer)}; otherwise
* the action is adapted to an instance of {@code LongConsumer}, by
* boxing the argument of {@code LongConsumer}, and then passed to
* {@link #forEachRemaining(java.util.function.LongConsumer)}.
@Override
default void forEachRemaining(Consumer<? super Long> action) {
if (action instanceof LongConsumer) {
forEachRemaining((LongConsumer) action);
}
else {
if (Tripwire.ENABLED)
Tripwire.trip(getClass(),
"{0} calling Spliterator.OfLong.forEachRemaining((LongConsumer) action::accept)");
forEachRemaining((LongConsumer) action::accept);
}
}
}
* A Spliterator specialized for {@code double} values.
* @since 1.8
public interface OfDouble extends OfPrimitive<Double, DoubleConsumer, OfDouble> {
@Override
OfDouble trySplit();
@Override
boolean tryAdvance(DoubleConsumer action);
@Override
default void forEachRemaining(DoubleConsumer action) {
do { } while (tryAdvance(action));
}
* {@inheritDoc}
* @implSpec
* If the action is an instance of {@code DoubleConsumer} then it is
* cast to {@code DoubleConsumer} and passed to
* {@link #tryAdvance(java.util.function.DoubleConsumer)}; otherwise
* the action is adapted to an instance of {@code DoubleConsumer}, by
* boxing the argument of {@code DoubleConsumer}, and then passed to
* {@link #tryAdvance(java.util.function.DoubleConsumer)}.
@Override
default boolean tryAdvance(Consumer<? super Double> action) {
if (action instanceof DoubleConsumer) {
return tryAdvance((DoubleConsumer) action);
}
else {
if (Tripwire.ENABLED)
Tripwire.trip(getClass(),
"{0} calling Spliterator.OfDouble.tryAdvance((DoubleConsumer) action::accept)");
return tryAdvance((DoubleConsumer) action::accept);
}
}
* {@inheritDoc}
* @implSpec
* If the action is an instance of {@code DoubleConsumer} then it is
* cast to {@code DoubleConsumer} and passed to
* {@link #forEachRemaining(java.util.function.DoubleConsumer)};
* otherwise the action is adapted to an instance of
* {@code DoubleConsumer}, by boxing the argument of
* {@code DoubleConsumer}, and then passed to
* {@link #forEachRemaining(java.util.function.DoubleConsumer)}.
@Override
default void forEachRemaining(Consumer<? super Double> action) {
if (action instanceof DoubleConsumer) {
forEachRemaining((DoubleConsumer) action);
}
else {
if (Tripwire.ENABLED)
Tripwire.trip(getClass(),
"{0} calling Spliterator.OfDouble.forEachRemaining((DoubleConsumer) action::accept)");
forEachRemaining((DoubleConsumer) action::accept);
}
}
}
}*/
六、Consumer 与 IntConsumer 的强制类型转换测试
// 六、Consumer 与 IntConsumer 的强制类型转换测试
// 传入面向对象 对象
this.action(intConsumer);
// 传入Lambda表达式 函数式编程
this.action(intConsumer::accept);
this.action(value -> intConsumer.accept(value));
this.action(consumer::accept);
this.action(value -> consumer.accept(value));
// 面向对象强制类型转换 报错java.lang.ClassCastException
// this.action((IntConsumer) consumer);
// this.action(((IntConsumer) consumer)::accept);
// this.action(t -> ((IntConsumer) consumer).accept(t));
// 函数式编程强制类型转换 Lambda表达式没变
this.action((IntConsumer) consumer::accept);
this.action((IntConsumer) (t -> consumer.accept(t)));
this.action((IntConsumer) t -> consumer.accept(t));
七、Iterator-based Spliterators 与 StreamSupport底层实现
// 七、Iterator-based Spliterators 与 StreamSupport底层实现
// Iterator-based Spliterators
/*
* A Spliterator using a given Iterator for element
* operations. The spliterator implements {@code trySplit} to
* permit limited parallelism.
* spliterator利用trySplit实现有限的并行化操作
*
* static class IteratorSpliterator<T> implements Spliterator<T> {}
*/
/*
* Low-level utility methods for creating and manipulating streams.
* 用于创建和操作流的底层实用程序方法
*
* <p>This class is mostly for library writers presenting stream views
* of data structures; most static stream methods intended for end users are in
* the various {@code Stream} classes.
* StreamSupport提供数据结构的流视图的library 大多数为终端用户使用的静态流方法在Stream类中
*
* @since 1.8
*
public final class StreamSupport {
* Creates a new sequential or parallel {@code Stream} from a
* {@code Spliterator}.
*
*
* <p>The spliterator is only traversed, split, or queried for estimated
* size after the terminal operation of the stream pipeline commences.
* 仅在流管道的终端操作开始后,才遍历、拆分或查询spliterator的估计大小。
*
* <p>It is strongly recommended the spliterator report a characteristic of
* {@code IMMUTABLE} or {@code CONCURRENT}, or be
* <a href="../Spliterator.html#binding">late-binding</a>. Otherwise,
* {@link #stream(java.util.function.Supplier, int, boolean)} should be used
* to reduce the scope of potential interference with the source. See
* <a href="package-summary.html#NonInterference">Non-Interference</a> for
* more details.
* 强烈建议对spliterator设置characteristic(IMMUTABLE CONCURRENT late-binding)
* 以减少潜在的干扰源范围
*
public static <T> Stream<T> stream(Spliterator<T> spliterator, boolean parallel) {
Objects.requireNonNull(spliterator);
return new ReferencePipeline.Head<>(spliterator,
StreamOpFlag.fromCharacteristics(spliterator),
parallel);
}
}*/
八、流源分析
// 八、流源分析
/*
流源的创建
Abstract base class for an intermediate pipeline stage or pipeline source
stage implementing whose elements are of type {@code U}.
抽象基类:用于实现其元素类型为{@code U}的中间管道阶段或管道源阶段
ReferencePipeline 操作引用类型 (将源阶段 与 [0,n)个中间操作阶段 看做一个对象)
* @param <P_IN> type of elements in the upstream source
* @param <P_OUT> type of elements in produced by this stage
abstract class ReferencePipeline<P_IN, P_OUT>
extends AbstractPipeline<P_IN, P_OUT, Stream<P_OUT>>
implements Stream<P_OUT> {
* 源阶段
* Source stage of a ReferencePipeline.
*
* @param <E_IN> type of elements in the upstream source
* @param <E_OUT> type of elements in produced by this stage
ReferencePipeline中静态内部类Head
static class Head<E_IN, E_OUT> extends ReferencePipeline<E_IN, E_OUT>
*
* 注意:
* 流本身不持有数据
* 数据的持有者:流的数据源(集合、数组等)
* 流关注对数据的计算
*/
/* 抽象基类: 抽象管道AbstractPipeline 流接口及 其特化的核心实现
管理流管道 创建 与 评估
* Abstract base class for "pipeline" classes, which are the core
* implementations of the Stream interface and its primitive specializations.
* Manages construction and evaluation of stream pipelines.
*
* <p>A concrete intermediate stage is generally built from an
* {@code AbstractPipeline}, a shape-specific pipeline class which extends it
* (e.g., {@code IntPipeline}) which is also abstract, and an operation-specific
* concrete class which extends that. {@code AbstractPipeline} contains most of
* the mechanics of evaluating the pipeline, and implements methods that will be
* used by the operation; the shape-specific classes add helper methods for
* dealing with collection of results into the appropriate shape-specific
* containers.
*
*
* <p>After chaining a new intermediate operation, or executing a terminal
* operation, the stream is considered to be consumed, and no more intermediate
* or terminal operations are permitted on this stream instance.
* 在链式添加中间操作或一个终止操作后 流视做被消费
* 流只能被消费一次 已消费-->不允许在此流实例中存在更多的中间操作或终止操作
*
* @implNote
* <p>For sequential streams, and parallel streams without
* <a href="package-summary.html#StreamOps">stateful intermediate
* operations</a>, parallel streams, pipeline evaluation is done in a single
* pass that "jams" all the operations together. For parallel streams with
* stateful operations, execution is divided into segments, where each
* stateful operations marks the end of a segment, and each segment is
* evaluated separately and the result used as the input to the next
* segment. In all cases, the source data is not consumed until a terminal
* operation begins.
* 串行流 与 无状态的并行流
* 流的消费 是将中间的操作进行“jams”(打包放一起)对流中每个元素执行action-->single pass
*
* 有状态的并行流
* 执行分成segments 分别对segment执行有状态操作 并将其结果作为下一个segment输入
*
* 在任何情况下,有且只有在一个终止操作被调用时 流真正被消费
abstract class AbstractPipeline<E_IN, E_OUT, S extends BaseStream<E_OUT, S>>
extends PipelineHelper<E_OUT> implements BaseStream<E_OUT, S>
AbstractPipeline的构造方法
AbstractPipeline(Supplier<? extends Spliterator<?>> source,
int sourceFlags, boolean parallel) {}
AbstractPipeline(Spliterator<?> source,
int sourceFlags, boolean parallel) {}
同一时间构造同一个AbstractPipeline 有且只有调用AbstractPipeline构造方法之一
sourceSpliterator与sourceSupplier
同一时间只能存在其一
当流被消费后 若not null 要设置为null
只能被消费一次
private Spliterator<?> sourceSpliterator;
private Supplier<? extends Spliterator<?>> sourceSupplier;
*/
/*
针对于流源的foreach
Optimized sequential terminal operations for the head of the pipeline
@Override
public void forEach(Consumer<? super E_OUT> action) {
if (!isParallel()) {
sourceStageSpliterator().forEachRemaining(action);
}
else {
super.forEach(action);
}
}
Terminal operations from Stream
@Override
public void forEach(Consumer<? super P_OUT> action) {
evaluate(ForEachOps.makeRef(action, false));
}
*/
九、Array.asList()流源遍历注意事项
// 九、Array.asList()流源遍历注意事项
/*
为什么 未调用IteratorSpliterator.forEachRemaining()
list.stream().forEach(System.out::println); 执行过程分析
Arrays.asList()
private static class ArrayList<E> extends AbstractList<E> implements RandomAccess, java.io.Serializable{
private final E[] a;
ArrayList(E[] array) {
a = Objects.requireNonNull(array);
}
@Override
public Spliterator<E> spliterator() {
return Spliterators.spliterator(a, Spliterator.ORDERED);
}
}
public static <T> Spliterator<T> spliterator(Object[] array,
int additionalCharacteristics) {
return new ArraySpliterator<>(Objects.requireNonNull(array),
additionalCharacteristics);
}
@Override
public void forEach(Consumer<? super E_OUT> action) {
if (!isParallel()) {
sourceStageSpliterator().forEachRemaining(action);
}
else {
super.forEach(action);
}
}
@SuppressWarnings("unchecked")
@Override
public void forEachRemaining(Consumer<? super T> action) {
Object[] a; int i, hi; // hoist accesses and checks from loop
if (action == null)
throw new NullPointerException();
if ((a = array).length >= (hi = fence) &&
(i = index) >= 0 && i < (index = hi)) {
do { action.accept((T)a[i]); } while (++i < hi);
}
}*/
System.out.println(list.getClass());
// Arrays中静态内部类ArrayList (class java.util.Arrays$ArrayList)
// @Override public Spliterator<E> spliterator(){}
// 调用ArraySpliterator.forEachRemaining()实现
list.stream().forEach(System.out::println);
// 普通集合遍历 Iterable 中的 forEach
// 效率高
list.forEach(System.out::println);
}
}
十、测试结果
. ____ _ __ _ _
/\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \
\\/ ___)| |_)| | | | | || (_| | ) ) ) )
' |____| .__|_| |_|_| |_\__, | / / / /
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v2.1.2.RELEASE)
2019-02-20 18:09:13.662 INFO 2224 --- [ main] c.j.d.j.S.S.B.SpliteratorDetail : Starting SpliteratorDetail on DESKTOP-87RMBG4 with PID 2224 (started by 46250 in E:\IdeaProjects\design)
2019-02-20 18:09:13.663 INFO 2224 --- [ main] c.j.d.j.S.S.B.SpliteratorDetail : No active profile set, falling back to default profiles: default
2019-02-20 18:09:14.133 INFO 2224 --- [ main] c.j.d.j.S.S.B.SpliteratorDetail : Started SpliteratorDetail in 0.653 seconds (JVM running for 1.335)
100
100
100
100
100
100
100
100
class java.util.Arrays$ArrayList
Kirito
Asuna
Sinon
Yuuki
Alice
Kirito
Asuna
Sinon
Yuuki
Alice
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。