随便逛了一下知乎和思否的博文,大都没回答到点上。
I.浮点数的二进制存储
采用 IEEE 754 规范来存储浮点数:1
位【正负符号】+11
位【指数】+52
位【有效数字】,如下图
由于0.1.toString(2)
=0.0001100110011001100110011001100110011001100110011001101
所以
0.1 = 2^-4 * [1].1001100110011001100110011001100110011001100110011010
0.2 = 2^-3 * [1].1001100110011001100110011001100110011001100110011010
II. 到底怎么相加
铁律是52位有效数字,也就是:
0.1 = 2^-3 * 0.1100110011001100110011001100110011001100110011001101(0)
0.2 = 2^-3 * 1.1001100110011001100110011001100110011001100110011010
sum = 2^-2 * 1.0011001100110011001100110011001100110011001100110011(1)
由于有效数字变成了53位,根据IEEE754 rounding mode 的 Round to Nearest,若x在a和b之间,选择最低有效位为零的值。
a = 2^-2 * 1.0011001100110011001100110011001100110011001100110011
x = 2^-2 * 1.0011001100110011001100110011001100110011001100110011(1)
b = 2^-2 * 1.0011001100110011001100110011001100110011001100110100
当比较0.1+0.2 和 0.3时,实际比较的是
0.1 + 0.2 => 0:01111111101:0011001100110011001100110011001100110011001100110[100]
0.3 => 0:01111111101:0011001100110011001100110011001100110011001100110[011]
转成10进制,看上去是:
0.1 + 0.2 => 0.300000000000000044408920985006...
0.3 => 0.299999999999999988897769753748...
结果很明显啦
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。