- Data Lake Analytics(简称DLA)介绍
数据湖(Data Lake)是时下大数据行业热门的概念:https://en.wikipedia.org/wiki...。基于数据湖做分析,可以不用做任何ETL、数据搬迁等前置过程,实现跨各种异构数据源进行大数据关联分析,从而极大的节省成本和提升用户体验。关于Data Lake的概念。
终于,阿里云现在也有了自己的数据湖分析产品:https://www.aliyun.com/produc...
可以点击申请使用(目前公测阶段还属于邀测模式),体验本教程分析OTS数据之旅。
产品文档:https://help.aliyun.com/produ...
- ETL介绍
ETL(https://en.wikipedia.org/wiki...)就是Extract、Transfrom、Load即抽取、转换、加载,是传统数仓和大数据的重要工具。
抽取:就是从源系统抽取需要的数据,这些源系统是同构或异构的:比如Excel表格、XML文件、关系型数据库。
转换:源系统的数据按照分析目的,转换成目标系统要求的格式,或者做数据清洗和数据加工。
加载:把转换后的数据装载到目标数据库,作为联机分析、数据挖掘、数据展示的基础。
整个ETL过程就像是在源系统和目标系统之间构建一个管道,数据在这个管道里源源不断的流动。
- DLA与ETL
Data Placement Optimization(数据摆放优化)是目前云平台上的业务系统的主流架构方向和思路。架构师们会从读写性能、稳定性、强一致性、成本、易用性、开发效率等方面来考量不同存储引擎给业务上带来的好处,从而实现整个业务系统的完美的平衡状态。
而这种跨异构数据源之间的数据搬迁,却不是一件容易的事情。很多ELT工具基本上属于框架级别,需要自己开发不少的辅助工具;同时表达能力也较弱,无法满足很多场景;另外对异构数据源的抽象和兼容性也不是那么完美。
反观DLA,无论从哪方面来看,DLA都完美的契合ETL的需求场景。下图是DLA的简易架构图,DLA一开始就是基于“MPP计算引擎+存储计算分离+弹性高可用+异构数据集源”等架构原则来设计的,支持各种异构数据源读写是DLA的核心目标!
通过连接异构数据源来执行select + join + subQuery等逻辑实现Extract,通过Filter+ Project + Aggregation + Sort + Functions等实现数据流转换和映射Transform,而通过insert实现Load,下面是一个例子:
--基本格式
insert into target_table (col1, col2, col3, ....) --需要导入的列以及列的顺序
select c1, c2, c3, .... --需要与导入列的类型兼容,顺序要确认清楚
from ... --可以是任何你想要查询的数据目标
where ...
--下面是一个例子
insert into target_table (id, name, age)
select s1.pk1, s2.name, s1.age
from source_table1 s1
join source_table2 s2
on s1.sid = s2.sid
where s1.xxx = 'yyy'
下面我们就尝试往不同的数据源导入数据吧。
- 实际测试(以TableStore:为例)
准备DLA账号(已有测试账号)
测试集群:上海region;
账号账号:DLA测试账号;
准备两个来源表(两个TPC-H的OSS表,customer和nation),用来做join和数据查询;
准备一个TableStore(https://help.aliyun.com/docum...;
执行导入SQL,写入数据后校验结果;
a)两个来源表定义:
mysql> show create database tpch_50x_text; | |
---|---|
Database | Create Database |
tpch_50x_text | CREATE DATABASE tpch_50x_text
|
WITH DBPROPERTIES (
catalog = 'hive',
location = 'oss://${您的bucket}/datasets/tpch/50x/text_date/'
)
COMMENT '' |
---|
1 row in set (0.02 sec)
mysql> show tables; |
---|
Table_Name |
customer |
nation |
2 rows in set (0.03 sec)
mysql> show create table customer; | |
---|---|
Table | Create Table |
customer | CREATE EXTERNAL TABLE tpch_50x_text .customer ( |
`c_custkey` int,
`c_name` string,
`c_address` string,
`c_nationkey` int,
`c_phone` string,
`c_acctbal` double,
`c_mktsegment` string,
`c_comment` string
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
STORED AS TEXTFILE
LOCATION 'oss://${您的bucket}/datasets/tpch/50x/text_date/customer_text' |
---|
1 row in set (0.90 sec)
mysql> show create table nation; | |
---|---|
Table | Create Table |
nation | CREATE EXTERNAL TABLE tpch_50x_text .nation ( |
`n_nationkey` int,
`n_name` string,
`n_regionkey` int,
`n_comment` string
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
STORED AS TEXTFILE
LOCATION 'oss://${您的bucket}/datasets/tpch/50x/text_date/nation_text' |
---|
1 row in set (0.73 sec)
b)准备TableStore的库和表
建库
mysql> show create database etl_ots_test; | |
---|---|
Database | Create Database |
etl_ots_test | CREATE DATABASE etl_ots_test
|
WITH DBPROPERTIES (
catalog = 'ots',
location = 'https://${您的instance}.cn-shanghai.ots-internal.aliyuncs.com',
instance = '${您的instance}'
)
COMMENT '' |
---|
1 row in set (0.02 sec)
使用库
mysql> use etl_ots_test;
Database changed
建表
mysql> show create table test_insert; | |
---|---|
Table | Create Table |
test_insert | CREATE EXTERNAL TABLE test_insert ( |
`id1_int` int NOT NULL COMMENT '客户id主键',
`c_address` varchar(20) NULL COMMENT '客户的地址',
`c_acctbal` double NULL COMMENT '客户的account balance',
PRIMARY KEY (`id1_int`)
)
COMMENT '' |
---|
1 row in set (0.03 sec)
以下是实际数据的截图:
c)开始导入数据,确保导入字段顺序和类型兼容性:
检查数据,都是空的
mysql> select * from etl_ots_test.test_insert;
Empty set (0.31 sec)
mysql> use tpch_50x_text;
Database changed
查询下nation数据,其中CANADA的nationkey是3,后续要找这个数据
mysql> select n_nationkey, n_name from nation; | |
---|---|
n_nationkey | n_name |
0 | ALGERIA |
1 | ARGENTINA |
2 | BRAZIL |
3 | CANADA |
4 | EGYPT |
5 | ETHIOPIA |
6 | FRANCE |
7 | GERMANY |
8 | INDIA |
9 | INDONESIA |
10 | IRAN |
11 | IRAQ |
12 | JAPAN |
13 | JORDAN |
14 | KENYA |
15 | MOROCCO |
16 | MOZAMBIQUE |
17 | PERU |
18 | CHINA |
19 | ROMANIA |
20 | SAUDI ARABIA |
21 | VIETNAM |
22 | RUSSIA |
23 | UNITED KINGDOM |
24 | UNITED STATES |
25 rows in set (0.37 sec)
查询下customer数据,我们只关注nationkey=3以及c_mktsegment='BUILDING'的数据
mysql> select count(*) from customer where c_nationkey = 3 and c_mktsegment = 'BUILDING'; |
---|
count(*) |
60350 |
1 row in set (0.66 sec)
查询下customer数据,我们只关注nationkey=3以及c_mktsegment='BUILDING'的数据
mysql> select * from customer where c_nationkey = 3 and c_mktsegment = 'BUILDING' order by c_custkey limit 3; | |||||||
---|---|---|---|---|---|---|---|
c_custkey | c_name | c_address | c_nationkey | c_phone | c_acctbal | c_mktsegment | c_comment |
13 | Customer#000000013 | nsXQu0oVjD7PM659uC3SRSp | 3 | 13-761-547-5974 | 3857.34 | BUILDING | ounts sleep carefully after the close frays. carefully bold notornis use ironic requests. blithely |
27 | Customer#000000027 | IS8GIyxpBrLpMT0u7 | 3 | 13-137-193-2709 | 5679.84 | BUILDING | about the carefully ironic pinto beans. accoun |
40 | Customer#000000040 | gOnGWAyhSV1ofv | 3 | 13-652-915-8939 | 1335.3 | BUILDING | rges impress after the slyly ironic courts. foxes are. blithely |
3 rows in set (0.78 sec)
导入之前我们想清楚需求:把国家是'CANADA'的,客户的market segmentation为'BUILDING'的客户找到,然后对c_custkey排序,选择前10条数据,然后选择他们的c_custkey、c_address、c_acctbal三列,清晰到OTS的test_insert表中,以备后续使用。
先查询下数据,看看有几条数据
mysql> select c.c_custkey, c.c_address, c.c_acctbal
-> from tpch_50x_text.customer c
-> join tpch_50x_text.nation n
-> on c.c_nationkey = n.n_nationkey
-> where n.n_name = 'CANADA'
-> and c.c_mktsegment = 'BUILDING'
-> order by c.c_custkey
-> limit 10;
c_custkey | c_address | c_acctbal |
---|---|---|
13 | nsXQu0oVjD7PM659uC3SRSp | 3857.34 |
27 | IS8GIyxpBrLpMT0u7 | 5679.84 |
40 | gOnGWAyhSV1ofv | 1335.3 |
64 | MbCeGY20kaKK3oalJD,OT | -646.64 |
255 | I8Wz9sJBZTnEFG08lhcbfTZq3S | 3196.07 |
430 | s2yfPEGGOqHfgkVSs5Rs6 qh,SuVmR | 7905.17 |
726 | 4w7DOLtN9Hy,xzZMR | 6253.81 |
905 | f iyVEgCU2lZZPCebx5bGp5 | -600.73 |
1312 | f5zgMB4MHLMSHaX0tDduHAmVd4 | 9459.5 |
1358 | t23gsl4TdVXqTZha DioEHIq5w7y | 5149.23 |
10 rows in set (1.09 sec)
开始导入
mysql> insert into etl_ots_test.test_insert (id1_int ,c_address, c_acctbal)
-> select c.c_custkey, c.c_address, c.c_acctbal
-> from tpch_50x_text.customer c
-> join tpch_50x_text.nation n
-> on c.c_nationkey = n.n_nationkey
-> where n.n_name = 'CANADA'
-> and c.c_mktsegment = 'BUILDING'
-> order by c.c_custkey
-> limit 10;
rows |
---|
10 |
1 row in set (2.14 sec)
验证结果,没有问题:
mysql> select * from etl_ots_test.test_insert; | ||
---|---|---|
id1_int | c_address | c_acctbal |
13 | nsXQu0oVjD7PM659uC3SRSp | 3857.34 |
27 | IS8GIyxpBrLpMT0u7 | 5679.84 |
40 | gOnGWAyhSV1ofv | 1335.3 |
64 | MbCeGY20kaKK3oalJD,OT | -646.64 |
255 | I8Wz9sJBZTnEFG08lhcbfTZq3S | 3196.07 |
430 | s2yfPEGGOqHfgkVSs5Rs6 qh,SuVmR | 7905.17 |
726 | 4w7DOLtN9Hy,xzZMR | 6253.81 |
905 | f iyVEgCU2lZZPCebx5bGp5 | -600.73 |
1312 | f5zgMB4MHLMSHaX0tDduHAmVd4 | 9459.5 |
1358 | t23gsl4TdVXqTZha DioEHIq5w7y | 5149.23 |
10 rows in set (0.27 sec)
d)注意点:
虽然有ETL工具快速导入导出,但也有些问题需要注意的,比如:
如果导入任务时间太长,请走异步模式,否则连接断开可能会影响任务正常运行;
TableStore目前的insert是根据主键覆盖,主键不会去重判断的,请务必不能对你正常的数据表做插入;
目前DLA和TableStore的事务能力还不够,可能会出现中断,已导入的数据不会清楚,需要自行清理;
列的个数和列的类型,需要自己对齐保障,否则会报错;
- 其他数据源导入
整个过程是不是很简单?是不是想要导入其他场景的数据源?对DLA而言,底层任何数据源都以相同方式处理,只要确保其他数据源的库、表在DLA中正常创建,就可以正常的读写,实现ETL啦!赶紧试试吧!
其他相关的文档:
使用Data Lake Analytics从OSS清洗数据到AnalyticDB:https://yq.aliyun.com/article...
DLA相关技术文档:https://yq.aliyun.com/search?...
Data Lake Analytics使用场景:https://help.aliyun.com/docum...
OLAP on TableStore——基于Data Lake Analytics的Serverless SQL大数据分析https://yq.aliyun.com/article...
使用Data Lake Analytics 分析OSS数据:https://help.aliyun.com/docum...
Data Lake Analytics数据库的连接方式:https://help.aliyun.com/docum...
Data Lake Analytics分析RDS数据:https://yq.aliyun.com/article...
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。