简述
什么是RunLoop?顾名思义RunLoop是一个运行循环,它的作用是使得程序在运行之后不会马上退出,保持运行状态,来处理一些触摸事件、定时器时间等。RunLoop可以使得线程在有任务的时候处理任务,没有任务的时候休眠,以此来节省CPU资源,提高程序性能。
那RunLoop是怎样保持程序的运行状态,到底处理了哪些事件?下面我们就从源码的层面来了解一下RunLoop。
RunLoop
获取runloop对象
NSRunLoop和CFRunLoopRef都代表RunLoop对象,NSRunLoop是对CFRunLoopRef的封装。
Foundation
[NSRunLoop currentRunLoop]; // 获得当前线程的RunLoop对象
[NSRunLoop mainRunLoop]; // 获得主线程的RunLoop对象
Core Foundation
CFRunLoopGetCurrent(); // 获得当前线程的RunLoop对象
CFRunLoopGetMain(); // 获得主线程的RunLoop对象
RunLoop相关类
从源码的代码结构中我们可以找出来一下5个跟RunLoop相关的结构
CFRunLoopRef
CFRunLoopModeRef
CFRunLoopSourceRef
CFRunLoopObserverRef
CFRunLoopTimerRef
下面是CFRunLoopRef的结构代码
struct __CFRunLoop {
CFRuntimeBase _base;
pthread_mutex_t _lock; /* locked for accessing mode list */
__CFPort _wakeUpPort; // used for CFRunLoopWakeUp
Boolean _unused;
volatile _per_run_data *_perRunData; // reset for runs of the run loop
pthread_t _pthread;
uint32_t _winthread;
CFMutableSetRef _commonModes;
CFMutableSetRef _commonModeItems;
CFRunLoopModeRef _currentMode;
CFMutableSetRef _modes;
struct _block_item *_blocks_head;
struct _block_item *_blocks_tail;
CFAbsoluteTime _runTime;
CFAbsoluteTime _sleepTime;
CFTypeRef _counterpart;
};
变量很多,我们不需要全部看,只需要注意这两个
CFRunLoopModeRef _currentMode;
CFMutableSetRef _modes;
每一个runloop里面有很多mode(存在一个set集合里面),然后之后后一个mode叫做currentMode,也就是说runloop一次只能处理一种mode。
然后我们再看CFRunLoopModeRef
的结构,我已经给大家省略了里面那些我们不需要关注的变量
typedef struct __CFRunLoopMode *CFRunLoopModeRef;
struct __CFRunLoopMode {
CFStringRef _name;
CFMutableSetRef _sources0;
CFMutableSetRef _sources1;
CFMutableArrayRef _observers;
CFMutableArrayRef _timers;
};
根据上面这些我们大概的可以概括出来RunLoop这些相关类的关系。
CFRunLoopModeRef
由上面的源码我们可以稍微总结一下这个CFRunLoopModeRef:
- CFRunLoopModeRef代表RunLoop的运行模式
- 一个RunLoop包含多个CFRunLoopModeRef,每个CFRunLoopModeRef又包含多个_sources0,_sources1,_observers,_timers。
- RunLoop每次只能运行一种mode,切换mode的时候,要先退出之前的mode。
- 如果mode中没有_sources0、_sources1、_observers、_timers,程序会立刻退出。
常用的两种Mode
kCFRunLoopDefaultMode(NSDefaultRunLoopMode):App的默认Mode,通常主线程是在这个Mode下运行
UITrackingRunLoopMode:界面跟踪 Mode,用于 ScrollView 追踪触摸滑动,保证界面滑动时不受其他 Mode 影响。
CFRunLoopObserverRef
源码中给出了可以监听的RunLoop状态
/* Run Loop Observer Activities */
typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) {
// 进入RunLoop
kCFRunLoopEntry = (1UL << 0),
// 即将处理timers
kCFRunLoopBeforeTimers = (1UL << 1),
// 即将处理Sources
kCFRunLoopBeforeSources = (1UL << 2),
// 即将休眠
kCFRunLoopBeforeWaiting = (1UL << 5),
// 被唤醒
kCFRunLoopAfterWaiting = (1UL << 6),
// 退出循环
kCFRunLoopExit = (1UL << 7),
// 所有状态
kCFRunLoopAllActivities = 0x0FFFFFFFU
};
具体的怎么样添加observer来监听RunLoop状态我就不贴代码了,网上一搜有很多的。
RunLoop的运行逻辑
前面我们已经了解了RunLoop相关的结构的源码,知道了RunLoop大概的数据结构,那RunLoop到底是如何工作的呢?它的运行逻辑是什么?
我们了解过了每个mode中会存放不同的_sources0、_sources1、_observers、_timers,这些我们可以全部统称是RunLoop要处理的东西,那每一种具体对应我们了解的哪写事件呢?
Source0
触摸事件处理
performSelector:onThread:
Source1
基于系统Port(端口)的线程间通信
系统事件捕捉
Timers
NSTimer定时器
performSelector:withObject:afterDelay:
Observers
用于监听RunLoop的状态
UI刷新(BeforeWating)
Autorelease Pool (BeforWaiting)
注: UI的刷新并不是即时生效,比如说我们改变了view的backgroundColor,当执行到这行代码是并不是立刻生效,而是先记录下有这么一个任务,然后在RunLoop处理完所有的时间,进入休眠之前UI刷新。
这是大神总结的RunLoop的运行逻辑图,我直接拿过来用了。我们主要是看左边这部分,右边的这些标注是在源码中对应的主要方法名称。
这个图很容易理解,只有从06跳转到08这一步,单从图上看的话不是很清晰,这一块结合源码就比较明了了。第06步,如果存在Source1就直接跳转到08,在代码中使用了goto这个关键字,其实就是跳过了runloop休眠和唤醒这一部分的代码,直接跳转到了处理各种事件的这一部分。
下面我把源码做了一些删减,方便大家可以更清楚的梳理整个过程
// 这个是runloop入口函数
SInt32 CFRunLoopRunSpecific(CFRunLoopRef rl, CFStringRef modeName, CFTimeInterval seconds, Boolean returnAfterSourceHandled) { /* DOES CALLOUT */
// 通知Observers 即将进入RunLoop
if (currentMode->_observerMask & kCFRunLoopEntry ) __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopEntry);
// 核心方法
result = __CFRunLoopRun(rl, currentMode, seconds, returnAfterSourceHandled, previousMode);
// 通知Observers 即将退出RunLoop
if (currentMode->_observerMask & kCFRunLoopExit ) __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit);
return result;
}
下面是核心方法
static int32_t __CFRunLoopRun(CFRunLoopRef rl, CFRunLoopModeRef rlm, CFTimeInterval seconds, Boolean stopAfterHandle, CFRunLoopModeRef previousMode) {
int32_t retVal = 0;
do {
//通知Observers 即将处理Timers
if (rlm->_observerMask & kCFRunLoopBeforeTimers) __CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeTimers);
//通知Observers 即将处理Sources
if (rlm->_observerMask & kCFRunLoopBeforeSources) __CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeSources);
//处理Blocks
__CFRunLoopDoBlocks(rl, rlm);
//处理source0,根据返回值决定在处理一次blocks
Boolean sourceHandledThisLoop = __CFRunLoopDoSources0(rl, rlm, stopAfterHandle);
if (sourceHandledThisLoop) {
__CFRunLoopDoBlocks(rl, rlm);
}
Boolean poll = sourceHandledThisLoop || (0ULL == timeout_context->termTSR);
// source1相关
if (MACH_PORT_NULL != dispatchPort && !didDispatchPortLastTime) {
msg = (mach_msg_header_t *)msg_buffer;
// 是否有Source1 有的话跳转到handle_msg
if (__CFRunLoopServiceMachPort(dispatchPort, &msg, sizeof(msg_buffer), &livePort, 0, &voucherState, NULL)) {
goto handle_msg;
}
}
didDispatchPortLastTime = false;
// 通知Observers: 即将休眠
if (!poll && (rlm->_observerMask & kCFRunLoopBeforeWaiting)) __CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeWaiting);
//休眠
__CFRunLoopSetSleeping(rl);
//等待别的消息来唤醒当前线程
__CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort, poll ? 0 : TIMEOUT_INFINITY, &voucherState, &voucherCopy);
__CFRunLoopUnsetSleeping(rl);
// 通知Observers: 即将醒来
if (!poll && (rlm->_observerMask & kCFRunLoopAfterWaiting)) __CFRunLoopDoObservers(rl, rlm, kCFRunLoopAfterWaiting);
// 标识标识 !!!!!
handle_msg:;
__CFRunLoopSetIgnoreWakeUps(rl);
//下面根据是什么唤醒的runloop来分别处理
if (MACH_PORT_NULL == livePort) {
CFRUNLOOP_WAKEUP_FOR_NOTHING();
// handle nothing
} else if (livePort == rl->_wakeUpPort) {
CFRUNLOOP_WAKEUP_FOR_WAKEUP();
// do nothing on Mac OS
}
// 被Timer唤醒
else if (modeQueuePort != MACH_PORT_NULL && livePort == modeQueuePort) {
CFRUNLOOP_WAKEUP_FOR_TIMER();
// 处理Timers
if (!__CFRunLoopDoTimers(rl, rlm, mach_absolute_time())) {
// Re-arm the next timer, because we apparently fired early
__CFArmNextTimerInMode(rlm, rl);
}
}
// 被Timer唤醒
else if (rlm->_timerPort != MACH_PORT_NULL && livePort == rlm->_timerPort) {
CFRUNLOOP_WAKEUP_FOR_TIMER();
// 处理Timers
if (!__CFRunLoopDoTimers(rl, rlm, mach_absolute_time())) {
// Re-arm the next timer
__CFArmNextTimerInMode(rlm, rl);
}
}
// 被GCD唤醒
else if (livePort == dispatchPort) {
// 处理GCD相关
__CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg);
} else {
//被Source1唤醒
//处理Source1
sourceHandledThisLoop = __CFRunLoopDoSource1(rl, rlm, rls, msg, msg->msgh_size, &reply) || sourceHandledThisLoop;
}
//在处理一遍BLocks
__CFRunLoopDoBlocks(rl, rlm);
// 设置返回值 决定是否继续循环
if (sourceHandledThisLoop && stopAfterHandle) {
retVal = kCFRunLoopRunHandledSource;
} else if (timeout_context->termTSR < mach_absolute_time()) {
retVal = kCFRunLoopRunTimedOut;
} else if (__CFRunLoopIsStopped(rl)) {
__CFRunLoopUnsetStopped(rl);
retVal = kCFRunLoopRunStopped;
} else if (rlm->_stopped) {
rlm->_stopped = false;
retVal = kCFRunLoopRunStopped;
} else if (__CFRunLoopModeIsEmpty(rl, rlm, previousMode)) {
retVal = kCFRunLoopRunFinished;
}
} while (0 == retVal);
return retVal;
}
图和源码结合来看,整个流程就清晰了很多。流程里面的有些东西不需要我们太过深入的研究,我们把这个流程掌握一下就OK了。
细节补充
第一点
我们都知道RunLoop有一个优势,那就是可以使线程在有工作的时候工作,没有工作的时候休眠,来减少占用CPU资源,提高程序性能。
这说明代码在执行到
//等待别的消息来唤醒当前线程
__CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort, poll ? 0 : TIMEOUT_INFINITY, &voucherState, &voucherCopy);
的时候,会阻塞当前的线程。但这种阻塞跟我们之前所用到过的阻塞线程不是一回事。
举个例子,我们可以使用while(1){};
这句代码来阻塞线程,这句代码在底层会转换为汇编的代码,我们的线程一直在重读执行这几句代码,所以他仅仅是阻塞线程,并没有使线程休眠,我们的线程一直在工作。但是runloop,通过mach_msg
使用了一些内核层的API,真的是实现了线程的休眠,让线程不再占用CPU资源。
第二点
RunLoop与线程的关系?
- 一个线程对应一个RunLoop对象。
- RunLoop默认不创建,在第一次获取的时候创建,主线程中的默认存在RunLoop也是因为在底层代码中,提前获取过一次。
- RunLoop储存在一个全局的字典中,线程是key,RunLoop是value。(源码中有所体现)
- RunLoop会在线程结束时销毁。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。