2
作者:高玉珑

来源:宜信技术学院

技术沙龙001期|AI中台:一种敏捷的智能业务支持方案|宜信技术沙龙 3月28日晚8点线上直播,点击报名

1、什么是Sharding-JDBC

Sharding-JDBC定位为轻量级Java框架,在Java的JDBC层提供的额外服务。它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架。

2、Sharding-JDBC能做什么

分库 & 分表

读写分离

分布式主键

分布式事务

3、适用项目框架

Sharding-JDBC适用于:

  • 任何基于Java的ORM框架,如:JPA, Hibernate, Mybatis, Spring JDBC
    Template或直接使用JDBC。
  • 基于任何第三方的数据库连接池,如:DBCP, C3P0, BoneCP, Druid, HikariCP等。
  • 支持任意实现JDBC规范的数据库,目前支持MySQL,Oracle,SQLServer和PostgreSQL。

4、Maven依赖

<!-- sharding jdbc 开始-->
<dependency>
 <groupId>io.shardingsphere</groupId>
 <artifactId>sharding-core</artifactId>
 <version>${sharding.version}</version>
</dependency>
<dependency>
 <groupId>io.shardingsphere</groupId>
 <artifactId>sharding-jdbc-spring-namespace</artifactId>
 <version>${sharding.version}</version>
</dependency>
<!—如果不配置分布式事务的话配置上边两个就够了 --> 
<!--分布式事务引用依赖-->
<dependency>
 <groupId>io.shardingsphere</groupId>
 <artifactId>sharding-transaction-2pc-xa</artifactId>
 <version>${sharding.version}</version>
</dependency>
<dependency>
 <groupId>io.shardingsphere</groupId>
 <artifactId>sharding-transaction-spring</artifactId>
 <version>${sharding.version}</version>
</dependency>
<!-- sharding jdbc 结束-->
<!--AspectJ AOP支持 -->
<dependency>
 <groupId>org.aspectj</groupId>
 <artifactId>aspectjweaver</artifactId>
 <version>${aspectjweaver.version}</version>
</dependency>

5、读写分离

5.1 数据源配置

先配置数据源

也可以配置读写分离

以下配置是ds0和ds1两个数据库的主和从一共四个数据源。

parentDs 是数据源公共的配置,抽出去以免写重复代码。

<!-- ds0的主-->
<bean id="ds0_master" class="com.alibaba.druid.pool.DruidDataSource" destroy-method="close" parent="parentDs"> 
<property name="driverClassName" value=""/>
 <property name="url" value=""/>
</bean>
<!-- ds0的从-->
<bean id="ds0_slave" class="com.alibaba.druid.pool.DruidDataSource" destroy-method="close" parent="parentDs">
 <property name="driverClassName" value=""/>
 <property name="url" value="${sharding.connection.url.0}"/>
</bean>
<!-- ds1的主-->
<bean id="ds1_master" class="com.alibaba.druid.pool.DruidDataSource" destroy-method="close" parent="parentDs">
 <property name="driverClassName" value=""/>
 <property name="url" value="${sharding.connection.url.1}"/>
</bean>
<!-- ds1的从-->
<bean id="ds1_slave" class="com.alibaba.druid.pool.DruidDataSource" destroy-method="close" parent="parentDs">
 <property name="driverClassName" value=""/>
 <property name="url" value="${sharding.connection.url.1}"/>
</bean>

5.2 读写分离配置

只配置主从不配置分库分表的情况如下,如果要配置分库分表则不需要下面这个配置。

master-data-source-name 是主数据源ID

slave-data-source-names 是从数据源ID

<master-slave:data-source id="masterSlaveDataSource" master-data-source-name="ds0_master, ds1_master" slave-data-source-names="ds0_slave, ds1_slave " >
 <master-slave:props>
 <prop key="sql.show">${sql_show}</prop>
 <prop key="executor.size">10</prop>
 <prop key="foo">bar</prop>
 </master-slave:props>
</master-slave:data-source>

5.3 读写分离和分库分表一起配置

如果读写分离和分库分表一起使用的话把主从路由配置到 shardingdata-source下就可以了。

sharding:master-slave-rule 的 id 就是配置出来的逻辑的数据源的名称,如果多个从的话还可以通过配置strategy-ref来配置负载均衡。

master-data-source 配置的是主库数据源ID 。

slave-data-source 配置的是从库数据源ID,多个以逗号分开。

<!-- sharding数据源-->
<sharding:data-source id="shardingDataSource">
 <!-- 读写分离的话要把所有的主从数据源都写在这里-->
 <sharding:sharding-rule
 data-source-names="ds0_master,ds0_slave,ds1_master,ds1_slave ">
 <!-- 读写分离的路由 一主一从配置 strategy-ref -->
 <sharding:master-slave-rules>
 <sharding:master-slave-rule id="ds0" master-data-source-name="ds0_master" slave-data-source-names="ds0_slave"/>
 <sharding:master-slave-rule id="ds1" master-data-source-name="ds1_master" slave-data-source-names="ds1_slave"/>
 </sharding:master-slave-rules>
 <!-- 读写分离配置 结束-->
 <sharding:table-rules>
 <!— 这里是分库分表路由的配置 -->
 </sharding:table-rules>
 <sharding:binding-table-rules>
 <!—- 绑定表的配置 --> 
 </sharding:binding-table-rules>
 </sharding:sharding-rule>
<sharding:props>
 <!-- 显示SQL -->
 <prop key="sql.show">true</prop>
 </sharding:props>
</sharding:data-source>

6、数据分片

6.1 分片支持

Sharding-JDBC提供了5种分片策略。由于分片算法和业务实现紧密相关,因此Sharding-JDBC并未提供内置分片算法,而是通过分片策略将各种场景提炼出来,提供更高层级的抽象,并提供接口让应用开发者自行实现分片算法。

StandardShardingStrategy

标准分片策略。提供对SQL语句中的=, IN和BETWEEN AND的分片操作支持。StandardShardingStrategy只支持单分片键,提供PreciseShardingAlgorithm和RangeShardingAlgorithm两个分片算法。PreciseShardingAlgorithm是必选的,用于处理=和IN的分片;RangeShardingAlgorithm是可选的,用于处理BETWEEN AND分片,如果不配置RangeShardingAlgorithm,SQL中的BETWEEN AND将按照全库路由处理。

ComplexShardingStrategy

复合分片策略。提供对SQL语句中的=, IN和BETWEEN AND的分片操作支持。ComplexShardingStrategy支持多分片键,由于多分片键之间的关系复杂,因此Sharding-JDBC并未做过多的封装,而是直接将分片键值组合以及分片操作符交于算法接口,完全由应用开发者实现,提供最大的灵活度。

InlineShardingStrategy

Inline表达式分片策略。使用Groovy的Inline表达式,提供对SQL语句中的=和IN的分片操作支持。InlineShardingStrategy只支持单分片键,对于简单的分片算法,可以通过简单的配置使用,从而避免繁琐的Java代码开发,如: tuser${user_id % 8} 表示t_user表按照user_id按8取模分成8个表,表名称为t_user_0到t_user_7。

HintShardingStrategy

通过Hint而非SQL解析的方式分片的策略。

NoneShardingStrategy

不分片的策略。

6.2 分片配置

标准分片配置

<!-- 标准分片策略。-->
<bean id="demoUserStandardStrategy" class="shard.strategy.DemoUserStandardStrategy"/>
<sharding:standard-strategy id="shardingDemoUserStandardStrategy"
 precise-algorithm-ref="demoUserStandardStrategy" sharding-column="id" range-algorithm-ref=""/>

DemoUserStandardStrategy标准分片要实现 PreciseShardingAlgorithm 接口,doSharding的两个参数一个是所有数据源的cllection.另一个参数是执行SQL时传过来的分片的值。

/**
 * 根据ID取
 * 标准分片策略
 * 用于处理=和IN的分片
 * @author yulonggao
 * @date 2019/1/31 14:35
 */
@Slf4j
public class DemoUserStandardStrategy implements PreciseShardingAlgorithm<Long> {
 @Override
 public String doSharding(Collection<String> collection, PreciseShardingValue<Long> preciseShardingValue) {
 //这个里边有异常会被处理掉,然后导致拿不到分片。但出异常一般是业务代码写错了。
 //每条指定分片的操作都会调用此方法,如果是in 条件查询的话每个值会调用一次此方法,如果是批量插入也是每一条都要调用一次进行分片
 log.info("DemoUserStandardStrategy_preciseShardingValue={}", preciseShardingValue);
 Long suffix = preciseShardingValue.getValue() % 4;
 log.info("suffix={}", suffix);
 final String targetDb = String.valueOf(Math.abs(suffix.intValue()));
 String shardingValue = collection.stream().filter(p -> p.endsWith(targetDb)).findFirst().get();
 log.info("preciseShardingValue={},shardingValue={}", preciseShardingValue, shardingValue);
 return shardingValue;
 }
}

强制分片

<!-- 强制路由分片策略-->
<bean id="demoUserHintStrategy" class="shard.strategy.DemoUserHintStrategy"/>
<!-- 强制路由例子使用-->
<sharding:hint-strategy id="shardingDemoUserHintStrategy" algorithm-ref="demoUserHintStrategy"/>
DemoUserHintStrategy 的Java 如下,强制分片要实现HintShardingAlgorithm接口。
/**
 * DemoUserHint强制路由分片策略,其实可以共用,只是例子
 * @author yulonggao
 * @date 2019/1/31 14:35
 */
@Slf4j
public class DemoUserHintStrategy implements HintShardingAlgorithm {
 @Override
 public Collection<String> doSharding(Collection<String> availableTargetNames, ShardingValue shardingValue) {
 //availableTargetNames 这个参数是所有的dataSource的集合,shardingValue是HintManager传过来的分片信息
 log.info("DemoUserHintStrategy_availableTargetNames={}", availableTargetNames);
 log.info("DemoUserHintStrategy_shardingValue={}", shardingValue);
 ListShardingValue listShardingValue = (ListShardingValue) shardingValue;
 Collection shardingValueList = listShardingValue.getValues();
 //因为调用的时候分片是直接传的 DataSource的名称,所以直接返回就可以了,如果传其它值则要加业务逻辑进行分片筛选
 //返回结果只能是availableTargetNames 里边所包含的
 return shardingValueList;
 }
}

生成分部式ID的配置,生成主键的类要实现KeyGenerator接口。

<!—主键生成 -->
<bean id="keyId" class="shard.key.DefaultKeyGenerator"/>
Sharding-JDBC 使用入门和基本配置

图片描述

7、分布式事务

把下面这行代码配置在spring里,shardingTransaction.xml 是jar包里边带的。

文件的源码只有两行配置:

<bean id="transactionManager"
 class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="shardingDataSource"></property>
</bean>
<tx:annotation-driven transaction-manager="transactionManager"/>
<!-- 事务支持-->
<import resource="classpath:META-INF/shardingTransaction.xml"/>

使用注解配置事务要同时使用ShardingTransactionType和Transactional两个注解。

/**
 * 注意:@ShardingTransactionType需要同Spring的@Transactional配套使用,事务才会生效。
 * @param param
 * @return
 */
@ShardingTransactionType(TransactionType.XA)
@Transactional(rollbackFor = Exception.class)
@Override
public int addParam(DemoParam param) {
log.info("addParam-param={}", param);
return demoParamDao.addParam(param);
}

7.1 支持程度

完全支持非跨库事务,例如:仅分表或分库但是路由的结果在单库中。

完全支持因逻辑异常导致的跨库事务。例如:同一事务中跨两个库更新,更新完毕后,抛出空指针,则两个库的内容都能回滚。

支持数据库字段约束造成的回滚。

不支持因网络、硬件异常导致的跨库事务。例如:同一事务中跨两个库更新,更新完毕后、未提交之前,第一个库死机,则只有第二个库数据提交。

8、其他问题

关于order by 排序,如果排序的字段不在查询结果中,生成的SQL也会被带上,但结果不返回给你。

Sharding-JDBC 使用入门和基本配置

图片描述

9、参考文档

https://shardingsphere.apache...

宜信技术学院


宜信技术学院
4.3k 声望13.8k 粉丝

宜信技术学院是宜信旗下的金融科技能力展示与输出平台。通过分享在金融科技领域的开源成果、研发实践促进金融科技生态圈企业创新升级。