更多内容请关注微信公众号【Java技术江湖】

这是一位阿里 Java 工程师的技术小站,作者黄小斜,专注 Java 相关技术:SSM、SpringBoot、MySQL、分布式、中间件、集群、Linux、网络、多线程,偶尔讲点Docker、ELK,同时也分享技术干货和学习经验,致力于Java全栈开发!(关注公众号后回复”资料“即可领取 3T 免费技术学习资源以及我我原创的程序员校招指南、Java学习指南等资源)

**

本节主要介绍字符串常量和字符串类型的区别

具体代码在我的GitHub中可以找到

https://github.com/h2pl/MyTech

文章首发于我的个人博客:

https://h2pl.github.io/2018/0...

<!-- more -->

String的连接

@Test
public void contact () {
    //1连接方式
    String s1 = "a";
    String s2 = "a";
    String s3 = "a" + s2;
    String s4 = "a" + "a";
    String s5 = s1 + s2;
    //表达式只有常量时,编译期完成计算
    //表达式有变量时,运行期才计算,所以地址不一样
    System.out.println(s3 == s4); //f
    System.out.println(s3 == s5); //f
    System.out.println(s4 == "aa"); //t

}

String类型的intern

public void intern () {
    //2:string的intern使用
    //s1是基本类型,比较值。s2是string实例,比较实例地址
    //字符串类型用equals方法比较时只会比较值
    String s1 = "a";
    String s2 = new String("a");
    //调用intern时,如果s2中的字符不在常量池,则加入常量池并返回常量的引用
    String s3 = s2.intern();
    System.out.println(s1 == s2);
    System.out.println(s1 == s3);
}

String类型的equals

//字符串的equals方法
//    public boolean equals(Object anObject) {
//            if (this == anObject) {
//                return true;
//            }
//            if (anObject instanceof String) {
//                String anotherString = (String)anObject;
//                int n = value.length;
//                if (n == anotherString.value.length) {
//                    char v1[] = value;
//                    char v2[] = anotherString.value;
//                    int i = 0;
//                    while (n-- != 0) {
//                        if (v1[i] != v2[i])
//                            return false;
//                        i++;
//                    }
//                    return true;
//                }
//            }
//            return false;
//        }

StringBuffer和Stringbuilder

底层是继承父类的可变字符数组value

/**
 * The value is used for character storage.
 */
char[] value;
初始化容量为16

/**
 * Constructs a string builder with no characters in it and an
 * initial capacity of 16 characters.
 */
public StringBuilder() {
    super(16);
}
这两个类的append方法都是来自父类AbstractStringBuilder的方法

public AbstractStringBuilder append(String str) {
    if (str == null)
        return appendNull();
    int len = str.length();
    ensureCapacityInternal(count + len);
    str.getChars(0, len, value, count);
    count += len;
    return this;
}
@Override
public StringBuilder append(String str) {
    super.append(str);
    return this;
}

@Override
public synchronized StringBuffer append(String str) {
    toStringCache = null;
    super.append(str);
    return this;
}

append

Stringbuffer在大部分涉及字符串修改的操作上加了synchronized关键字来保证线程安全,效率较低。

String类型在使用 + 运算符例如

String a = "a"

a = a + a;时,实际上先把a封装成stringbuilder,调用append方法后再用tostring返回,所以当大量使用字符串加法时,会大量地生成stringbuilder实例,这是十分浪费的,这种时候应该用stringbuilder来代替string。


扩容

#注意在append方法中调用到了一个函数

ensureCapacityInternal(count + len);
该方法是计算append之后的空间是否足够,不足的话需要进行扩容

public void ensureCapacity(int minimumCapacity) {
    if (minimumCapacity > 0)
        ensureCapacityInternal(minimumCapacity);
}
private void ensureCapacityInternal(int minimumCapacity) {
    // overflow-conscious code
    if (minimumCapacity - value.length > 0) {
        value = Arrays.copyOf(value,
                newCapacity(minimumCapacity));
    }
}
如果新字符串长度大于value数组长度则进行扩容

扩容后的长度一般为原来的两倍 + 2;

假如扩容后的长度超过了jvm支持的最大数组长度MAX_ARRAY_SIZE。

考虑两种情况

如果新的字符串长度超过int最大值,则抛出异常,否则直接使用数组最大长度作为新数组的长度。

private int hugeCapacity(int minCapacity) {
    if (Integer.MAX_VALUE - minCapacity < 0) { // overflow
        throw new OutOfMemoryError();
    }
    return (minCapacity > MAX_ARRAY_SIZE)
        ? minCapacity : MAX_ARRAY_SIZE;
}

删除

这两个类型的删除操作:

都是调用父类的delete方法进行删除

public AbstractStringBuilder delete(int start, int end) {
    if (start < 0)
        throw new StringIndexOutOfBoundsException(start);
    if (end > count)
        end = count;
    if (start > end)
        throw new StringIndexOutOfBoundsException();
    int len = end - start;
    if (len > 0) {
        System.arraycopy(value, start+len, value, start, count-end);
        count -= len;
    }
    return this;
}
事实上是将剩余的字符重新拷贝到字符数组value。

这里用到了system.arraycopy来拷贝数组,速度是比较快的

system.arraycopy方法

转自知乎:

在主流高性能的JVM上(HotSpot VM系、IBM J9 VM系、JRockit系等等),可以认为System.arraycopy()在拷贝数组时是可靠高效的——如果发现不够高效的情况,请报告performance bug,肯定很快就会得到改进。

java.lang.System.arraycopy()方法在Java代码里声明为一个native方法。所以最naïve的实现方式就是通过JNI调用JVM里的native代码来实现。



String的不可变性

关于String的不可变性,这里转一个不错的回答

什么是不可变?

String不可变很简单,如下图,给一个已有字符串"abcd"第二次赋值成"abcedl",不是在原内存地址上修改数据,而是重新指向一个新对象,新地址。

这里写图片描述

String为什么不可变?

翻开JDK源码,java.lang.String类起手前三行,是这样写的:


public final class String implements java.io.Serializable, Comparable<String>, CharSequence {   
  /** String本质是个char数组. 而且用final关键字修饰.*/     
private final char value[];  ...  ...
 } 
 

首先String类是用final关键字修饰,这说明String不可继承。再看下面,String类的主力成员字段value是个char[]数组,而且是用final修饰的。

final修饰的字段创建以后就不可改变。 有的人以为故事就这样完了,其实没有。因为虽然value是不可变,也只是value这个引用地址不可变。挡不住Array数组是可变的事实。

Array的数据结构看下图。
这里写图片描述

也就是说Array变量只是stack上的一个引用,数组的本体结构在heap堆。

String类里的value用final修饰,只是说stack里的这个叫value的引用地址不可变。没有说堆里array本身数据不可变。看下面这个例子,

final int[] value={1,2,3} ;
int[] another={4,5,6};
 value=another;    //编译器报错,final不可变 value用final修饰,编译器不允许我把value指向堆区另一个地址。
但如果我直接对数组元素动手,分分钟搞定。

 final int[] value={1,2,3};
 value[2]=100;  //这时候数组里已经是{1,2,100}   所以String是不可变,关键是因为SUN公司的工程师。
 在后面所有String的方法里很小心的没有去动Array里的元素,没有暴露内部成员字段。

private final char value[]这一句里,private的私有访问权限的作用都比final大。而且设计师还很小心地把整个String设成final禁止继承,避免被其他人继承后破坏。所以String是不可变的关键都在底层的实现,而不是一个final。考验的是工程师构造数据类型,封装数据的功力。 

不可变有什么好处?

这个最简单地原因,就是为了安全。看下面这个场景(有评论反应例子不够清楚,现在完整地写出来),一个函数appendStr( )在不可变的String参数后面加上一段“bbb”后返回。appendSb( )负责在可变的StringBuilder后面加“bbb”。

总结以下String的不可变性。

1 首先final修饰的类只保证不能被继承,并且该类的对象在堆内存中的地址不会被改变。

2 但是持有String对象的引用本身是可以改变的,比如他可以指向其他的对象。

3 final修饰的char数组保证了char数组的引用不可变。但是可以通过char[0] = 'a'来修改值。不过String内部并不提供方法来完成这一操作,所以String的不可变也是基于代码封装和访问控制的。

举个例子


final class Fi {
    int a;
    final int b = 0;
    Integer s;

}
final char[]a = {'a'};
final int[]b = {1};
@Test
public void final修饰类() {
    //引用没有被final修饰,所以是可变的。
    //final只修饰了Fi类型,即Fi实例化的对象在堆中内存地址是不可变的。
    //虽然内存地址不可变,但是可以对内部的数据做改变。
    Fi f = new Fi();
    f.a = 1;
    System.out.println(f);
    f.a = 2;
    System.out.println(f);
    //改变实例中的值并不改变内存地址。


    Fi ff = f;
    //让引用指向新的Fi对象,原来的f对象由新的引用ff持有。
    //引用的指向改变也不会改变原来对象的地址
    f = new Fi();
    System.out.println(f);
    System.out.println(ff);
}
这里的对f.a的修改可以理解为char[0] = 'a'这样的操作。只改变数据值,不改变内存值。


有关常量池和intern的内容在上一节讲到了。

具体参考:https://blog.csdn.net/a724888...

下一节重讲一下final关键字。

具体参考:https://blog.csdn.net/a724888...

微信公众号【程序员江湖】

一个专注于程序员修炼和成长的平台,这里有技术指南、求职攻略,也有职场经验、生活感悟,更有自我提升的方法、对成长的思考等内容。作者是一枚阿里程序员,每天和你一起聊聊,程序员练级之路上的那些事。

在这里插入图片描述

【程序员江湖】里有什么?
1、每天分享一篇程序员干货文章,包括但不限于技术干货、求职攻略、学习方法、成长经验、生活感悟等方面的内容。

2、公众号后台回复“加群”即可加入我们的程序员专属微信群(目前有程序员江湖大群、Java等方向的技术交流群、春招实习交流群等)

3、公众号后台回复“资料”即可获得3T海量学习资料,资料涵盖各个技术方向,包括Java、C++、前端、大数据、移动开发等方向。每个方向都包含了基础、进阶、求职等部分内容。


程序员黄小斜
947 声望123 粉丝