1

在 Java 领域,实现并发程序的主要手段就是多线程。线程是操作系统里的一个概念,虽然各种不同的开发语言如 Java、C# 等都对其进行了封装,但原理和思路都是相同都。Java 语言里的线程本质上就是操作系统的线程,它们是一一对应的。

在操作系统层面,线程也有“生老病死”,专业的说法叫有生命周期。对于有生命周期的事物,要学好它,只要能搞懂生命周期中各个节点的状态转换机制就可以了。

虽然不同的开发语言对于操作系统线程进行了不同的封装,但是对于线程的生命周期这部分,基本上是雷同的。所以,我们可以先来了解一下通用的线程生命周期模型,然后再详细的学习一下 Java 中线程的生命周期。

通用的线程生命周期

通用的线程生命周期基本上可以用下图这个“五态模型”来描述。这五态分别是:

初始状态、可运行状态、运行状态、休眠状态 和 终止状态

图片描述
通用线程状态转换图——五态模型

  1. 初始状态:指的是线程已经被创建,但是还不允许分配 CPU 执行。这个状态属于编程语言特有的,不过这里所谓的被创建,仅仅是在编程语言层面被创建,而在操作系统层面,真正的线程还没有创建。
  2. 可运行状态:指的是线程可以分配 CPU 执行。在这种状态下,真正的操作系统线程已经被成功创建了,所以可以分配 CPU 执行。
  3. 运行状态:当有空闲的 CPU 时,操作系统会将其分配给一个处于可运行状态的线程,被分配到 CPU 的线程的状态就转换成了运行状态
  4. 休眠状态:运行状态的线程如果调用一个阻塞的 API(例如以阻塞方式读文件)或者等待某个事件(例如条件变量),那么线程的状态就会转换到 休眠状态,同时释放 CPU 使用权,休眠状态的线程永远没有机会获得 CPU 使用权。当等待的事件出现了,线程就会从休眠状态转换到可运行状态。
  5. 终止状态:线程执行完或者出现异常就会进入 终止状态,终止状态的线程不会切换到其他任何状态,进入终止状态也就意味着线程的生命周期结束了。
这五种状态在不同编程语言里会有简化合并或者被细化。

Java 中线程的生命周期

Java 语言中线程共有六种状态,分别是:

  1. NEW(初始化状态)
  2. RUNNABLE(可运行 / 运行状态)
  3. BLOCKED(阻塞状态)
  4. WAITING(无时限等待)
  5. TIMED_WAITING(有时限等待)
  6. TERMINATED(终止状态)

在操作系统层面,Java 线程中的 BLOCKED、WAITING、TIMED_WAITING 是一种状态,即前面我们提到的休眠状态。也就是说

只要 Java 线程处于这三种状态之一,那么这个线程就永远没有 CPU 的使用权。

所以 Java 线程的生命周期可以简化为下图:

图片描述
Java 中的线程状态转换图

其中,BLOCKED、WAITING、TIMED_WAITING 可以理解为线程导致休眠状态的三种原因。那具体是哪些情形会导致线程从 RUNNABLE 状态转换到这三种状态呢?而这三种状态又是何时转换回 RUNNABLE 的呢?以及 NEW、TERMINATED 和 RUNNABLE 状态是如何转换的?

1. RUNNABLE 与 BLOCKED 的状态转换

只有一种场景会触发这种转换,就是线程等待 synchronized 的隐式锁。synchronized 修饰的方法、代码块同一时刻只允许一个线程执行,其他线程只能等待,这种情况下,等待的线程就会从 RUNNABLE 转换到 BLOCKED 状态。而当等待的线程获得 synchronized 隐式锁时,就又会从 BLOCKED 转换到 RUNNABLE 状态。

如果你熟悉操作系统线程的生命周期的话,可能会有个疑问:线程调用阻塞式 API 时,是否会转换到 BLOCKED 状态呢?在操作系统层面,线程是会转换到休眠状态的,但是在 JVM 层面,Java 线程的状态不会发生变化,也就是说 Java 线程的状态会依然保持 RUNNABLE 状态。

JVM 层面并不关心操作系统调度相关的状态 ,因为在 JVM 看来,等待 CPU 使用权(操作系统层面此时处于可执行状态)与等待 I/O(操作系统层面此时处于休眠状态)没有区别,都是在等待某个资源,所以都归入了 RUNNABLE 状态。

而我们平时所谓的 Java 在调用阻塞式 API 时,线程会阻塞,指的是操作系统线程的状态,并不是 Java 线程的状态。

2. RUNNABLE 与 WAITING 的状态转换

有三种场景会触发这种转换。

第一种场景,获得 synchronized 隐式锁的线程,调用无参数的 Object.wait() 方法。

第二种场景,调用无参数的 Thread.join() 方法。其中的 join() 是一种线程同步方法,例如有一个线程对象 thread A,当调用 A.join() 的时候,执行这条语句的线程会等待 thread A 执行完,而等待中的这个线程,其状态会从 RUNNABLE 转换到 WAITING。当线程 thread A 执行完,原来等待它的线程又会从 WAITING 状态转换到 RUNNABLE。

第三种场景,调用 LockSupport.park() 方法。其中的 LockSupport 对象,也许你有点陌生,其实 Java 并发包中的锁,都是基于它实现的。调用 LockSupport.park() 方法,当前线程会阻塞,线程的状态会从 RUNNABLE 转换到 WAITING。调用 LockSupport.unpark(Thread thread) 可唤醒目标线程,目标线程的状态又会从 WAITING 状态转换到 RUNNABLE。

3. RUNNABLE 与 TIMED_WAITING 的状态转换

有五种场景会触发这种转换:

  1. 调用带超时参数的 Thread.sleep(long millis) 方法;
  2. 获得 synchronized 隐式锁的线程,调用带超时参数的 Object.wait(long timeout) 方法;
  3. 调用带超时参数的 Thread.join(long millis) 方法;
  4. 调用带超时参数的 LockSupport.parkNanos(Object blocker, long deadline) 方法;
  5. 调用带超时参数的 LockSupport.parkUntil(long deadline) 方法。

TIMED_WAITING 和 WAITING 状态的区别,仅仅是触发条件多了 超时参数。

4. 从 NEW 到 RUNNABLE 状态

Java 刚创建出来的 Thread 对象就是 NEW 状态,而创建 Thread 对象主要有两种方法。一种是继承 Thread 对象,重写 run() 方法。示例代码如下:

// 自定义线程对象
class MyThread extends Thread {
  public void run() {
    // 线程需要执行的代码
    ......
  }
}
// 创建线程对象
MyThread myThread = new MyThread();

另一种是实现 Runnable 接口,重写 run() 方法,并将该实现类作为创建 Thread 对象的参数。示例代码如下:

// 实现 Runnable 接口
class Runner implements Runnable {
  @Override
  public void run() {
    // 线程需要执行的代码
    ......
  }
}
// 创建线程对象
Thread thread = new Thread(new Runner());

NEW 状态的线程,不会被操作系统调度,因此不会执行。Java 线程要执行,就必须转换到 RUNNABLE 状态。从 NEW 状态转换到 RUNNABLE 状态很简单,只要调用线程对象的 start() 方法就可以了,示例代码如下:

MyThread myThread = new MyThread();
// 从 NEW 状态转换到 RUNNABLE 状态
myThread.start();

5. 从 RUNNABLE 到 TERMINATED 状态

线程执行完 run() 方法后,会自动转换到 TERMINATED 状态,当然如果执行 run() 方法的时候异常抛出,也会导致线程终止。有时候我们需要强制中断 run() 方法的执行,例如 run() 方法访问一个很慢的网络,我们等不下去了,想终止怎么办呢?Java 的 Thread 类里面倒是有个 stop() 方法,不过已经标记为 @Deprecated,所以不建议使用了。正确的姿势其实是调用 interrupt() 方法。

stop() 和 interrupt() 方法的主要区别?

stop() 方法会真的杀死线程,不给线程喘息的机会,如果线程持有 ReentrantLock 锁,被 stop() 的线程并不会自动调用 ReentrantLock 的 unlock() 去释放锁,那其他线程就再也没机会获得 ReentrantLock 锁。所以该方法就不建议使用了,类似的方法还有 suspend() 和 resume() 方法,这两个方法同样也都不建议使用。

而 interrupt() 方法仅仅是通知线程,线程有机会执行一些后续操作,同时也可以无视这个通知。被 interrupt 的线程,是怎么收到通知的呢?一种是异常,另一种是主动检测。

当线程 A 处于 WAITING、TIMED_WAITING 状态时,如果其他线程调用线程 A 的 interrupt() 方法,会使线程 A 返回到 RUNNABLE 状态,同时线程 A 的代码会触发 InterruptedException 异常。上面我们提到转换到 WAITING、TIMED_WAITING 状态的触发条件,都是调用了类似 wait()、join()、sleep() 这样的方法,我们看这些方法的签名,发现都会 throws InterruptedException 这个异常。这个异常的触发条件就是:其他线程调用了该线程的 interrupt() 方法。

当线程 A 处于 RUNNABLE 状态时,并且阻塞在 java.nio.channels.InterruptibleChannel 上时,如果其他线程调用线程 A 的 interrupt() 方法,线程 A 会触发 java.nio.channels.ClosedByInterruptException 这个异常;而阻塞在 java.nio.channels.Selector 上时,如果其他线程调用线程 A 的 interrupt() 方法,线程 A 的 java.nio.channels.Selector 会立即返回。

还有一种是主动检测,如果线程处于 RUNNABLE 状态,并且没有阻塞在某个 I/O 操作上,例如中断计算圆周率的线程 A,这时就得依赖线程 A 主动检测中断状态了。如果其他线程调用线程 A 的 interrupt() 方法,那么线程 A 可以通过 isInterrupted() 方法,检测是不是自己被中断了。

Java线程的生命周期小结

多线程程序很难调试,出了 Bug 基本上都是靠日志,靠线程 dump 来跟踪问题,分析线程 dump 的一个基本功就是分析线程状态,大部分的死锁、饥饿、活锁问题都需要跟踪分析线程的状态。

通过 jstack 命令或者 Java VisualVM 这个可视化工具将 JVM 所有的线程栈信息导出来,完整的线程栈信息不仅包括线程的当前状态、调用栈,还包括了锁的信息。导出线程栈,分析线程状态是诊断并发问题的一个重要工具。

创建多少线程才是合适的?

在 Java 领域,实现并发程序的主要手段就是多线程,使用多线程还是比较简单的,但是使用多少个线程却是个困难的问题。工作中,经常有人问,“各种线程池的线程数量调整成多少是合适的?

要解决这个问题,首先要分析以下两个问题:

  1. 为什么要使用多线程?
  2. 多线程的应用场景有哪些?

为什么使用多线程

使用多线程,本质上就是提升程序性能。不过此刻谈到的性能,首要问题是:如何度量性能。

度量性能的指标有很多,但是有两个指标是最核心的,它们就是延迟和吞吐量。
延迟指的是发出请求到收到响应这个过程的时间;延迟越短,意味着程序执行得越快,性能也就越好。
吞吐量指的是在单位时间内能处理请求的数量;吞吐量越大,意味着程序能处理的请求越多,性能也就越好。这两个指标内部有一定的联系(同等条件下,延迟越短,吞吐量越大),但是由于它们隶属不同的维度(一个是时间维度,一个是空间维度),并不能互相转换。

我们所谓提升性能,从度量的角度,主要是降低延迟,提高吞吐量。这也是我们使用多线程的主要目的。那我们该怎么降低延迟,提高吞吐量呢?这个就要从多线程的应用场景说起了。

多线程的应用场景

要想“降低延迟,提高吞吐量”,对应的方法呢,基本上有两个方向,一个方向是优化算法,另一个方向是 将硬件的性能发挥到极致。前者属于算法范畴,后者则是和并发编程相关了。其实计算机主要有主要是两类:一个是 I/O,一个是 CPU。简言之,在并发编程领域,提升性能本质上就是提升 I/O 的利用率和 CPU 的利用率。单独来看,操作系统已经为我们做了利用率的优化了,但是解决的是针对单一的硬件利用率。我们的程序执行中是既要CPU也要I/O的。所以对于我们开发者,我们最终需要解决 CPU 和 I/O 设备综合利用率的问题。

下面我们用一个简单的示例来说明:如何利用多线程来提升 CPU 和 I/O 设备的利用率?假设程序按照 CPU 计算和 I/O 操作交叉执行的方式运行,而且 CPU 计算和 I/O 操作的耗时是 1:1。

如下图所示,如果只有一个线程,执行 CPU 计算的时候,I/O 设备空闲;执行 I/O 操作的时候,CPU 空闲,所以 CPU 的利用率和 I/O 设备的利用率都是 50%。

图片描述

如果有两个线程,如下图所示,当线程 A 执行 CPU 计算的时候,线程 B 执行 I/O 操作;当线程 A 执行 I/O 操作的时候,线程 B 执行 CPU 计算,这样 CPU 的利用率和 I/O 设备的利用率就都达到了 100%。

图片描述

通过上面的图示,很容易看出:单位时间处理的请求数量翻了一番,也就是说吞吐量提高了 1 倍。此时可以逆向思维一下,如果 CPU 和 I/O 设备的利用率都很低,那么可以尝试通过增加线程来提高吞吐量.

创建多少线程合适?

创建多少线程合适,要看多线程具体的应用场景。我们的程序一般都是 CPU 计算和 I/O 操作交叉执行的,由于 I/O 设备的速度相对于 CPU 来说都很慢,所以大部分情况下,I/O 操作执行的时间相对于 CPU 计算来说都非常长,这种场景我们一般都称为 I/O 密集型计算;和 I/O 密集型计算相对的就是 CPU 密集型计算了,CPU 密集型计算大部分场景下都是纯 CPU 计算。I/O 密集型程序和 CPU 密集型程序,计算最佳线程数的方法是不同的。

对于 CPU 密集型计算,多线程本质上是提升多核 CPU 的利用率,所以对于一个 4 核的 CPU,每个核一个线程,理论上创建 4 个线程就可以了,再多创建线程也只是增加线程切换的成本。所以,

对于 CPU 密集型的计算场景,理论上“线程的数量 =CPU 核数”就是最合适的。不过在工程上,线程的数量一般会设置为“CPU 核数 +1”

因为当线程因为偶尔的内存页失效或其他原因导致阻塞时,这个额外的线程可以顶上,从而保证 CPU 的利用率。

对于 I/O 密集型的计算场景,比如前面我们的例子中,如果 CPU 计算和 I/O 操作的耗时是 1:1,那么 2 个线程是最合适的。如果 CPU 计算和 I/O 操作的耗时是 1:2,那多少个线程合适呢?是 3 个线程,如下图所示:CPU 在 A、B、C 三个线程之间切换,对于线程 A,当 CPU 从 B、C 切换回来时,线程 A 正好执行完 I/O 操作。这样 CPU 和 I/O 设备的利用率都达到了 100%。

图片描述

三线程执行示意图

通过上面这个例子,我们会发现,对于 I/O 密集型计算场景,最佳的线程数是与程序中 CPU 计算和 I/O 操作的耗时比相关的,我们可以总结出这样一个公式:

最佳线程数 =1 +(I/O 耗时 / CPU 耗时)

我们令 R=I/O 耗时 / CPU 耗时,综合上图,可以这样理解:当线程 A 执行 IO 操作时,另外 R 个线程正好执行完各自的 CPU 计算。这样 CPU 的利用率就达到了 100%。

多核 CPU,只需要等比扩大就可以了,计算公式如下:

最佳线程数 =CPU 核数 * [ 1 +(I/O 耗时 / CPU 耗时)]

线程多少的总结

对于 I/O 密集型计算场景,I/O 耗时和 CPU 耗时的比值是一个关键参数,不幸的是这个参数是未知的,而且是动态变化的,所以工程上,我们要估算这个参数,然后做各种不同场景下的压测来验证我们的估计。所以压测时,我们需要重点关注 CPU、I/O 设备的利用率和性能指标(响应时间、吞吐量)之间的关系。
耗时的比值需要使用APM工具观察得出。


df007df
314 声望63 粉丝

Java,源码分析,敏捷开发, PM