目录介绍
- 1.Handler的常见的使用方式
- 2.如何在子线程中定义Handler
- 3.主线程如何自动调用Looper.prepare()
- 4.Looper.prepare()方法源码分析
- 5.Looper中用什么存储消息
- 6.Handler发送消息如何运作
- 7.Looper.loop()方法源码分析
- 8.runOnUiThread如何实现子线程更新UI
- 9.Handler的post方法和view的post方法
- 10.主线程中Looper的轮询死循环为何没阻塞主线程
- 11.得出部分结论
好消息
- 01.基础组件(9篇)
- 02.IPC机制(0篇)
- 03.View原理(7篇)
- 04.动画机制(2篇)
- 05.View事件(9篇)
- 06.消息机制(6篇)
- 07.多媒体(9篇)
- 08.View事件(4篇)
- 09.多线程(4篇)
- 10.Window(11篇)
- 11.WebView(4篇)
- 12.网络相关(7篇)
- 13.注解(14篇)
- 14.音视频(13篇)
- 15.优化相关(8篇)
- 16.设计模式(4篇)
- 20.零碎笔记(12篇)
- 21.kotlin学习(1篇)
- 22.源码分析(11篇)
- 23.架构技术(13篇)
- 25.RecyclerView(21篇)
- 博客笔记大汇总【16年3月到至今】,包括Java基础及深入知识点,Android技术博客,Python学习笔记等等,还包括平时开发中遇到的bug汇总,当然也在工作之余收集了大量的面试题,长期更新维护并且修正,持续完善……开源的文件是markdown格式的!同时也开源了生活博客,从12年起,积累共计N篇[近100万字,陆续搬到网上],转载请注明出处,谢谢!
- 链接地址:https://github.com/yangchong2...
- 如果觉得好,可以star一下,谢谢!当然也欢迎提出建议,万事起于忽微,量变引起质变!
1.Handler的常见的使用方式
-
handler机制大家都比较熟悉呢。在子线程中发送消息,主线程接受到消息并且处理逻辑。如下所示
- 一般handler的使用方式都是在主线程中定义Handler,然后在子线程中调用mHandler.sendXx()方法,这里有一个疑问可以在子线程中定义Handler吗?
public class MainActivity extends AppCompatActivity { private TextView tv ; /** * 在主线程中定义Handler,并实现对应的handleMessage方法 */ public static Handler mHandler = new Handler() { @Override public void handleMessage(Message msg) { if (msg.what == 101) { Log.i("MainActivity", "接收到handler消息..."); } } }; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); tv = (TextView) findViewById(R.id.tv); tv.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View v) { new Thread() { @Override public void run() { // 在子线程中发送异步消息 mHandler.sendEmptyMessage(1); } }.start(); } }); } }
2.如何在子线程中定义Handler
-
直接在子线程中创建handler,看看会出现什么情况?
- 运行后可以得出在子线程中定义Handler对象出错,难道Handler对象的定义或者是初始化只能在主线程中?其实不是这样的,错误信息中提示的已经很明显了,在初始化Handler对象之前需要调用Looper.prepare()方法
tv.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View v) { new Thread() { @Override public void run() { Handler mHandler = new Handler() { @Override public void handleMessage(Message msg) { if (msg.what == 1) { Log.i(TAG, "在子线程中定义Handler,接收并处理消息"); } } }; } }.start(); } });
-
如何正确运行。在这里问一个问题,在子线程中可以吐司吗?答案是可以的,只不过又条件,详细可以看这篇文章02.Toast源码深度分析
- 这样程序已经不会报错,那么这说明初始化Handler对象的时候我们是需要调用Looper.prepare()的,那么主线程中为什么可以直接初始化Handler呢?难道是主线程创建handler对象的时候,会自动调用Looper.prepare()方法的吗?
tv.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
new Thread() {
@Override
public void run() {
Looper.prepare();
Handler mHandler = new Handler() {
@Override
public void handleMessage(Message msg) {
if (msg.what == 1) {
Log.i(TAG, "在子线程中定义Handler,接收并处理消息");
}
}
};
Looper.loop();
}
}.start();
}
});
3.主线程如何自动调用Looper.prepare()
-
首先直接可以看在App初始化的时候会执行ActivityThread的main方法中的代码,如下所示
- 可以看到Looper.prepare()方法在这里调用,所以在主线程中可以直接初始化Handler了。
public static void main(String[] args) { //省略部分代码 Looper.prepareMainLooper(); ActivityThread thread = new ActivityThread(); thread.attach(false); if (sMainThreadHandler == null) { sMainThreadHandler = thread.getHandler(); } if (false) { Looper.myLooper().setMessageLogging(new LogPrinter(Log.DEBUG, "ActivityThread")); } Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER); Looper.loop(); throw new RuntimeException("Main thread loop unexpectedly exited"); }
-
并且可以看到还调用了:Looper.loop()方法,可以知道一个Handler的标准写法其实是这样的
Looper.prepare(); Handler mHandler = new Handler() { @Override public void handleMessage(Message msg) { if (msg.what == 101) { Log.i(TAG, "在子线程中定义Handler,并接收到消息"); } } }; Looper.loop();
4.Looper.prepare()方法源码分析
-
源码如下所示
- 可以看到Looper中有一个ThreadLocal成员变量,熟悉JDK的同学应该知道,当使用ThreadLocal维护变量时,ThreadLocal为每个使用该变量的线程提供独立的变量副本,所以每一个线程都可以独立地改变自己的副本,而不会影响其它线程所对应的副本。
public static void prepare() { prepare(true); } private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed)); }
-
思考:Looper.prepare()能否调用两次或者多次
- 如果运行,则会报错,并提示prepare中的Excetion信息。由此可以得出在每个线程中Looper.prepare()能且只能调用一次
//这里Looper.prepare()方法调用了两次 Looper.prepare(); Looper.prepare(); Handler mHandler = new Handler() { @Override public void handleMessage(Message msg) { if (msg.what == 1) { Log.i(TAG, "在子线程中定义Handler,并接收到消息。。。"); } } }; Looper.loop();
5.Looper中用什么存储消息
-
先看一下下面得源代码
- 看Looper对象的构造方法,可以看到在其构造方法中初始化了一个MessageQueue对象。MessageQueue也称之为消息队列,特点是先进先出,底层实现是单链表数据结构
private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed)); } private Looper(boolean quitAllowed) { mQueue = new MessageQueue(quitAllowed); mThread = Thread.currentThread(); }
-
得出结论
- Looper.prepare()方法初始话了一个Looper对象并关联在一个MessageQueue对象,并且一个线程中只有一个Looper对象,只有一个MessageQueue对象。
6.Handler发送消息如何运作
-
首先看看构造方法
- 可以看出在Handler的构造方法中,主要初始化了一下变量,并判断Handler对象的初始化不应再内部类,静态类,匿名类中,并且保存了当前线程中的Looper对象。
public Handler(Callback callback, boolean async) { if (FIND_POTENTIAL_LEAKS) { final Class<? extends Handler> klass = getClass(); if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && (klass.getModifiers() & Modifier.STATIC) == 0) { Log.w(TAG, "The following Handler class should be static or leaks might occur: " + klass.getCanonicalName()); } } mLooper = Looper.myLooper(); if (mLooper == null) { throw new RuntimeException( "Can't create handler inside thread that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = callback; mAsynchronous = async; }
-
看handler.sendMessage(msg)方法
- 关于下面得源码,是步步追踪,看enqueueMessage这个方法,原来msg.target就是Handler对象本身;而这里的queue对象就是我们的Handler内部维护的Looper对象关联的MessageQueue对象。
handler.sendMessage(message); //追踪到这一步 public final boolean sendMessage(Message msg){ return sendMessageDelayed(msg, 0); } public boolean sendMessageAtTime(Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); return false; } return enqueueMessage(queue, msg, uptimeMillis); } private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) { msg.target = this; if (mAsynchronous) { msg.setAsynchronous(true); } return queue.enqueueMessage(msg, uptimeMillis); }
-
看MessageQueue对象的enqueueMessage方法
- 看到这里MessageQueue并没有使用列表将所有的Message保存起来,而是使用Message.next保存下一个Message,从而按照时间将所有的Message排序
boolean enqueueMessage(Message msg, long when) { if (msg.target == null) { throw new IllegalArgumentException("Message must have a target."); } if (msg.isInUse()) { throw new IllegalStateException(msg + " This message is already in use."); } synchronized (this) { if (mQuitting) { IllegalStateException e = new IllegalStateException( msg.target + " sending message to a Handler on a dead thread"); Log.w(TAG, e.getMessage(), e); msg.recycle(); return false; } msg.markInUse(); msg.when = when; Message p = mMessages; boolean needWake; if (p == null || when == 0 || when < p.when) { // New head, wake up the event queue if blocked. msg.next = p; mMessages = msg; needWake = mBlocked; } else { // Inserted within the middle of the queue. Usually we don't have to wake // up the event queue unless there is a barrier at the head of the queue // and the message is the earliest asynchronous message in the queue. needWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { needWake = false; } } msg.next = p; // invariant: p == prev.next prev.next = msg; } // We can assume mPtr != 0 because mQuitting is false. if (needWake) { nativeWake(mPtr); } } return true; }
7.Looper.loop()方法源码分析
-
看看里面得源码,如下所示
- 看到Looper.loop()方法里起了一个死循环,不断的判断MessageQueue中的消息是否为空,如果为空则直接return掉,然后执行queue.next()方法
public static void loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue; Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); for (;;) { Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable, in case a UI event sets the logger final Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs; final long traceTag = me.mTraceTag; if (traceTag != 0 && Trace.isTagEnabled(traceTag)) { Trace.traceBegin(traceTag, msg.target.getTraceName(msg)); } final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis(); final long end; try { msg.target.dispatchMessage(msg); end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis(); } finally { if (traceTag != 0) { Trace.traceEnd(traceTag); } } if (slowDispatchThresholdMs > 0) { final long time = end - start; if (time > slowDispatchThresholdMs) { Slog.w(TAG, "Dispatch took " + time + "ms on " + Thread.currentThread().getName() + ", h=" + msg.target + " cb=" + msg.callback + " msg=" + msg.what); } } if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } msg.recycleUnchecked(); } }
-
看queue.next()方法源码
- 大概的实现逻辑就是Message的出栈操作,里面可能对线程,并发控制做了一些限制等。获取到栈顶的Message对象之后开始执行:msg.target.dispatchMessage(msg)
Message next() { // Return here if the message loop has already quit and been disposed. // This can happen if the application tries to restart a looper after quit // which is not supported. final long ptr = mPtr; if (ptr == 0) { return null; } int pendingIdleHandlerCount = -1; // -1 only during first iteration int nextPollTimeoutMillis = 0; for (;;) { if (nextPollTimeoutMillis != 0) { Binder.flushPendingCommands(); } nativePollOnce(ptr, nextPollTimeoutMillis); synchronized (this) { // Try to retrieve the next message. Return if found. final long now = SystemClock.uptimeMillis(); Message prevMsg = null; Message msg = mMessages; if (msg != null && msg.target == null) { // Stalled by a barrier. Find the next asynchronous message in the queue. do { prevMsg = msg; msg = msg.next; } while (msg != null && !msg.isAsynchronous()); } if (msg != null) { if (now < msg.when) { // Next message is not ready. Set a timeout to wake up when it is ready. nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); } else { // Got a message. mBlocked = false; if (prevMsg != null) { prevMsg.next = msg.next; } else { mMessages = msg.next; } msg.next = null; if (DEBUG) Log.v(TAG, "Returning message: " + msg); msg.markInUse(); return msg; } } else { // No more messages. nextPollTimeoutMillis = -1; } // Process the quit message now that all pending messages have been handled. if (mQuitting) { dispose(); return null; } // If first time idle, then get the number of idlers to run. // Idle handles only run if the queue is empty or if the first message // in the queue (possibly a barrier) is due to be handled in the future. if (pendingIdleHandlerCount < 0 && (mMessages == null || now < mMessages.when)) { pendingIdleHandlerCount = mIdleHandlers.size(); } if (pendingIdleHandlerCount <= 0) { // No idle handlers to run. Loop and wait some more. mBlocked = true; continue; } if (mPendingIdleHandlers == null) { mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)]; } mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers); } // Run the idle handlers. // We only ever reach this code block during the first iteration. for (int i = 0; i < pendingIdleHandlerCount; i++) { final IdleHandler idler = mPendingIdleHandlers[i]; mPendingIdleHandlers[i] = null; // release the reference to the handler boolean keep = false; try { keep = idler.queueIdle(); } catch (Throwable t) { Log.wtf(TAG, "IdleHandler threw exception", t); } if (!keep) { synchronized (this) { mIdleHandlers.remove(idler); } } } // Reset the idle handler count to 0 so we do not run them again. pendingIdleHandlerCount = 0; // While calling an idle handler, a new message could have been delivered // so go back and look again for a pending message without waiting. nextPollTimeoutMillis = 0; } }
-
那么msg.target是什么呢?通过追踪可以知道就是定义的Handler对象,然后查看一下Handler类的dispatchMessage方法:
- 可以看到,如果我们设置了callback(Runnable对象)的话,则会直接调用handleCallback方法
- 在初始化Handler的时候设置了callback(Runnable)对象,则直接调用run方法。
public void dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } handleMessage(msg); } } private static void handleCallback(Message message) { message.callback.run(); }
8.runOnUiThread如何实现子线程更新UI
-
看看源码,如下所示
- 如果msg.callback为空的话,会直接调用我们的mCallback.handleMessage(msg),即handler的handlerMessage方法。由于Handler对象是在主线程中创建的,所以handler的handlerMessage方法的执行也会在主线程中。
- 在runOnUiThread程序首先会判断当前线程是否是UI线程,如果是就直接运行,如果不是则post,这时其实质还是使用的Handler机制来处理线程与UI通讯。
public void dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } handleMessage(msg); } } @Override public final void runOnUiThread(Runnable action) { if (Thread.currentThread() != mUiThread) { mHandler.post(action); } else { action.run(); } }
9.Handler的post方法和view的post方法
-
Handler的post方法实现很简单,如下所示
mHandler.post(new Runnable() { @Override public void run() { } }); public final boolean post(Runnable r){ return sendMessageDelayed(getPostMessage(r), 0); }
-
view的post方法也很简单,如下所示
- 可以发现其调用的就是activity中默认保存的handler对象的post方法
public boolean post(Runnable action) { final AttachInfo attachInfo = mAttachInfo; if (attachInfo != null) { return attachInfo.mHandler.post(action); } ViewRootImpl.getRunQueue().post(action); return true; } public void post(Runnable action) { postDelayed(action, 0); } public void postDelayed(Runnable action, long delayMillis) { final HandlerAction handlerAction = new HandlerAction(action, delayMillis); synchronized (this) { if (mActions == null) { mActions = new HandlerAction[4]; } mActions = GrowingArrayUtils.append(mActions, mCount, handlerAction); mCount++; } }
10.主线程中Looper的轮询死循环为何没阻塞主线程
-
造成ANR的原因
-
造成ANR的原因一般有两种:
- 当前的事件没有机会得到处理(即主线程正在处理前一个事件,没有及时的完成或者looper被某种原因阻塞住了)
- 当前的事件正在处理,但没有及时完成
- 为了避免ANR异常,android使用了Handler消息处理机制。让耗时操作在子线程运行。
-
-
问题描述
- 在处理消息的时候使用了Looper.loop()方法,并且在该方法中进入了一个死循环,同时Looper.loop()方法是在主线程中调用的,那么为什么没有造成阻塞呢?
-
ActivityThread中main方法
- ActivityThread类的注释上可以知道这个类管理着我们平常所说的主线程(UI线程)
- 首先 ActivityThread 并不是一个 Thread,就只是一个 final 类而已。我们常说的主线程就是从这个类的 main 方法开始,main 方法很简短
public static final void main(String[] args) { ... //创建Looper和MessageQueue Looper.prepareMainLooper(); ... //轮询器开始轮询 Looper.loop(); ... }
-
Looper.loop()方法无限循环
- 看看Looper.loop()方法无限循环部分的代码
while (true) { //取出消息队列的消息,可能会阻塞 Message msg = queue.next(); // might block ... //解析消息,分发消息 msg.target.dispatchMessage(msg); ... }
-
为什么这个死循环不会造成ANR异常呢?
- 因为Android 的是由事件驱动的,looper.loop() 不断地接收事件、处理事件,每一个点击触摸或者说Activity的生命周期都是运行在 Looper.loop() 的控制之下,如果它停止了,应用也就停止了。只能是某一个消息或者说对消息的处理阻塞了 Looper.loop(),而不是 Looper.loop() 阻塞它。
-
处理消息handleMessage方法
- 如下所示
- 可以看见Activity的生命周期都是依靠主线程的Looper.loop,当收到不同Message时则采用相应措施。
- 如果某个消息处理时间过长,比如你在onCreate(),onResume()里面处理耗时操作,那么下一次的消息比如用户的点击事件不能处理了,整个循环就会产生卡顿,时间一长就成了ANR。
public void handleMessage(Message msg) { if (DEBUG_MESSAGES) Slog.v(TAG, ">>> handling: " + codeToString(msg.what)); switch (msg.what) { case LAUNCH_ACTIVITY: { Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStart"); final ActivityClientRecord r = (ActivityClientRecord) msg.obj; r.packageInfo = getPackageInfoNoCheck(r.activityInfo.applicationInfo, r.compatInfo); handleLaunchActivity(r, null); Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER); } break; case RELAUNCH_ACTIVITY: { Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityRestart"); ActivityClientRecord r = (ActivityClientRecord) msg.obj; handleRelaunchActivity(r); Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER); } break; case PAUSE_ACTIVITY: Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityPause"); handlePauseActivity((IBinder) msg.obj, false, (msg.arg1 & 1) != 0, msg.arg2, (msg.arg1 & 2) != 0); maybeSnapshot(); Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER); break; case PAUSE_ACTIVITY_FINISHING: Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityPause"); handlePauseActivity((IBinder) msg.obj, true, (msg.arg1 & 1) != 0, msg.arg2, (msg.arg1 & 1) != 0); Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER); break; ........... } }
-
loop的循环消耗性能吗?
- 主线程Looper从消息队列读取消息,当读完所有消息时,主线程阻塞。子线程往消息队列发送消息,并且往管道文件写数据,主线程即被唤醒,从管道文件读取数据,主线程被唤醒只是为了读取消息,当消息读取完毕,再次睡眠。因此loop的循环并不会对CPU性能有过多的消耗。
-
得出结论
- 简单的来说:ActivityThread的main方法主要就是做消息循环,一旦退出消息循环,那么你的程序也就可以退出了。
11.得出部分结论
-
得出得结论如下所示
- 1.主线程中定义Handler对象,ActivityThread的main方法中会自动创建一个looper,并且与其绑定。如果是子线程中直接创建handler对象,则需要手动创建looper。不过手动创建不太友好,需要手动调用quit方法结束looper。这个后面再说
- 2.一个线程中只存在一个Looper对象,只存在一个MessageQueue对象,可以存在N个Handler对象,Handler对象内部关联了本线程中唯一的Looper对象,Looper对象内部关联着唯一的一个MessageQueue对象。
- 3.MessageQueue消息队列不是通过列表保存消息(Message)列表的,而是通过Message对象的next属性关联下一个Message从而实现列表的功能,同时所有的消息都是按时间排序的。
其他介绍
01.关于博客汇总链接
02.关于我的博客
- github:https://github.com/yangchong211
- 知乎:https://www.zhihu.com/people/...
- 简书:http://www.jianshu.com/u/b7b2...
- csdn:http://my.csdn.net/m0_37700275
- 喜马拉雅听书:http://www.ximalaya.com/zhubo...
- 开源中国:https://my.oschina.net/zbj161...
- 泡在网上的日子:http://www.jcodecraeer.com/me...
- 邮箱:yangchong211@163.com
- 阿里云博客:https://yq.aliyun.com/users/a... 239.headeruserinfo.3.dT4bcV
- segmentfault头条:https://segmentfault.com/u/xi...
- 掘金:https://juejin.im/user/593943...
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。