前言
我们对
0
到255
之间的整数进行采样,并将结果存储在数组count
中:count[k]
就是整数k
的采样个数。我们以 浮点数 数组的形式,分别返回样本的最小值、最大值、平均值、中位数和众数。其中,众数是保证唯一的。
我们先来回顾一下中位数的知识:
- 如果样本中的元素有序,并且元素数量为奇数时,中位数为最中间的那个元素;
- 如果样本中的元素有序,并且元素数量为偶数时,中位数为中间的两个元素的平均值。
示例1:
输入:count = [0,1,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 输出:[1.00000,3.00000,2.37500,2.50000,3.00000]
示例2:
输入:count = [0,4,3,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 输出:[1.00000,4.00000,2.18182,2.00000,1.00000]
提示:
count.length == 256
1 <= sum(count) <= 10^9
计数表示的众数是唯一的
- 答案与真实值误差在
10^-5
以内就会被视为正确答案
解题思路
本地难度为中等,首先需要读懂题目意思,本题的入参数组count
其实算是一个压缩数据后的数组。
我们对0
到255
之间的整数进行采样,并将结果存储在数组count
中:count[k]
就是整数k
的采样个数。
简单来说就是,数组count
的第k
个元素就是k
在压缩前的数组中出现count[k]
个。以示例1的count
为例
[0,4,3,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
解压的过程如下:
第0个元素为0,则解压后的数组为[]
第1个元素为4,则解压后的数组为[1,1,1,1]
第2个元素为3,则解压后的数组为[1,1,1,1,2,2,2]
第3个元素为2,则解压后的数组为[1,1,1,1,2,2,2,3,3]
第4个元素为2,则解压后的数组为[1,1,1,1,2,2,2,3,3,4,4]
......
省略后续步骤
搞清楚count
的数据特征后,选择使用TreeMap
对count
进行处理,将有效数字及其出现个数存储起来(有效数字指的是count[k]
不为0的元素)。根据就是根据题目要求分别处理以下指标:
- 最小值:
TreeMap
中第一个key
- 最大值:
TreeMap
中最后一个key
- 平均值:
TreeMap
的key
之和除以value
之和 -
中位数:
- 计算出数组实际的元素个数(即
value
之和) - 根据元素个数的奇偶性,获取对应的值
- 计算出数组实际的元素个数(即
- 众数:出现次数最多的数字,即
TreeMap
中value
最大的键值对的key
实现代码
/**
* 1093. 大样本统计
*
* @param count
* @return
*/
public double[] sampleStats(int[] count) {
// 使用TreeMap有序存储数字及其出现次数
TreeMap<Integer, Integer> countMap = new TreeMap<>();
double[] result = new double[5];
// 总和
double sum = 0L;
// 数字出现总次数
double total = 0L;
// 最大出现次数
long maxTimes = 0;
// 最小值
double min;
// 最大值
double max;
// 平均值
double average;
// 中位数
double middle = 0;
// 众数,出现次数最多的数字
double mode = 0;
for (int i = 0; i < count.length; i++) {
if (count[i] != 0) {
countMap.put(i, count[i]);
sum = sum + i * count[i];
total += count[i];
if (count[i] > maxTimes) {
maxTimes = count[i];
mode = i;
}
}
}
min = countMap.firstKey().doubleValue();
max = countMap.lastKey().doubleValue();
average = sum / total;
// 是否为奇数
boolean odd = total % 2 != 0;
// 中位数索引
int middleIndex = (int) ((total - 1) / 2);
int index = -1;
Iterator<Map.Entry<Integer, Integer>> it = countMap.entrySet().iterator();
while (it.hasNext()) {
Map.Entry<Integer, Integer> entry = it.next();
int num = entry.getKey();
int times = entry.getValue();
index += times;
if (index > middleIndex) {
middle = num;
break;
} else if (index == middleIndex) {
if (odd) {
middle = num;
break;
} else {
middle = (num + it.next().getKey()) / 2.0;
break;
}
}
}
result[0] = min;
result[1] = max;
result[2] = average;
result[3] = middle;
result[4] = mode;
return result;
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。