1

作者|白松

关于Giraph 共有九个章节,本文第五个章节。

环境:在单机上(机器名:giraphx)启动了2个workers。

输入:SSSP文件夹,里面有1.txt和2.txt两个文件。

1、在Worker向Master汇报健康状况后,就开始等待Master创建InputSplit。

方法:每个Worker通过检某个Znode节点是否存在,同时在此Znode上设置Watcher。若不存在,就通过BSPEvent的waitForever()方法释放当前线程的锁,陷入等待状态。一直等到master创建该znode。此步骤位于BSPServiceWorker类中的startSuperStep方法中,等待代码如下:


2、Master调用createInputSplits()方法创建InputSplit。

在generateInputSplits()方法中,根据用户设定的VertexInputFormat获得InputSplits。代码如下:

其中minSplitCountHint为创建split的最小数目,其值如下:

minSplitCountHint = Workers数目 * NUM_INPUT_THREADS

NUM_INPUT_THREADS表示 每个Input split loading的线程数目,默认值为1 。 经查证,在TextVertexValueInputFormat抽象类中的getSplits()方法中的minSplitCountHint参数被忽略。用户输入的VertexInputFormat继承TextVertexValueInputFormat抽象类。

如果得到的splits.size小于minSplitCountHint,那么有些worker就没被用上。

得到split信息后,要把这些信息写到Zookeeper上,以便其他workers访问。上面得到的split信息如下:

[hdfs://giraphx:9000/user/root/SSSP/1.txt:0+66, hdfs://giraphx:9000/user/root/SSSP/2.txt:0+46]

遍历splits List,为每个split创建一个Znode,值为split的信息。如为split-0创建Znode,值为:hdfs://giraphx:9000/user/root/SSSP/1.txt:0+66

/_hadoopBsp/job_201404102333_0013/_vertexInputSplitDir/0

为split-1创建znode(如下),值为:hdfs://giraphx:9000/user/root/SSSP/2.txt:0+46

/_hadoopBsp/job_201404102333_0013/_vertexInputSplitDir/1

最后创建znode: /_hadoopBsp/job_201404102333_0013/_vertexInputSplitsAllReady 表示所有splits都创建好了。

3、Master根据splits创建Partitions。首先确定partition的数目。

BSPServiceMaster中的MasterGraphPartitioner<I.V,E,M>对象默认为HashMasterPartitioner。它的createInitialPartitionOwners()方法如下:

上面代码中是在工具类PartitionUtils计算Partition的数目,计算公式如下:

partitionCount=PARTITION_COUNT_MULTIPLIER availableWorkerInfos.size() availableWorkerInfos.size() ,其中PARTITION_COUNT_MULTIPLIER表示Multiplier for the current workers squared,默认值为1 。

可见,partitionCount值为4(122)。创建的partitionOwnerList信息如下:

[(id=0,cur=Worker(hostname=giraphx, MRtaskID=1, port=30001),prev=null,ckpt_file=null),

(id=1,cur=Worker(hostname=giraphx, MRtaskID=2, port=30002),prev=null,ckpt_file=null),

(id=2,cur=Worker(hostname=giraphx, MRtaskID=1, port=30001),prev=null,ckpt_file=null),

(id=3,cur=Worker(hostname=giraphx, MRtaskID=2, port=30002),prev=null,ckpt_file=null)]

4、Master创建Znode:/_hadoopBsp/job_201404102333_0013/_applicationAttemptsDir/0/_superstepDir/-1/_partitionExchangeDir,用于后面的exchange partition。

5、Master最后在assignPartitionOwners()方法中

把masterinfo,chosenWorkerInfoList,partitionOwners等信息写入Znode中(作为Znode的data),该Znode的路径为: /_hadoopBsp/job_201404102333_0013/_applicationAttemptsDir/0/_superstepDir/-1/_addressesAndPartitions 。

Master调用barrierOnWorkerList()方法开始等待各个Worker完成数据加载。调用关系如下:

barrierOnWorkerList中创建znode,path=/_hadoopBsp/job_201404102333_0013/_vertexInputSplitDoneDir 。然后检查该znode的子节点数目是否等于workers的数目,若不等于,则线程陷入等待状态。后面某个worker完成数据加载后,会创建子node(如 /_hadoopBsp/job_201404102333_0013/_vertexInputSplitDoneDir/giraphx_1)来激活该线程继续判断。

6、当Master创建第5步的znode后,会激活worker。

每个worker从znode上读出data,data包含masterInfo,WorkerInfoList和partitionOwnerList,然后各个worker开始加载数据。

把partitionOwnerList复制给BSPServiceWorker类中的workerGraphPartitioner(默认为HashWorkerPartitioner类型)对象的partitionOwnerList变量,后续每个顶点把根据vertexID通过workerGraphPartitioner对象获取其对应的partitionOwner。

每个Worker从znode: /_hadoopBsp/job_201404102333_0013/_vertexInputSplitDir获取子节点,得到inputSplitPathList,内容如下:

[/_hadoopBsp/job_201404102333_0013/_vertexInputSplitDir/1,

/_hadoopBsp/job_201404102333_0013/_vertexInputSplitDir/0]

然后每个Worker创建N个InputsCallable线程读取数据。N=Min(NUM_INPUT_THREADS,maxInputSplitThread),其中NUM_INPUT_THREADS默认值为1,maxInputSplitThread=(InputSplitSize-1/maxWorkers +1

那么,默认每个worker就是创建一个线程来加载数据。

在InputSplitsHandler类中的reserveInputSplit()方法中,每个worker都是遍历inputSplitPathList,通过创建znode来保留(标识要处理)的split。代码及注释如下:

当用reserveInputSplit()方法获取某个znode后,loadSplitsCallable类的loadInputSplit方法就开始通过该znode获取其HDFS的路径信息,然后读入数据、重分布数据。

VertexInputSplitsCallable类的readInputSplit()方法如下:

7、每个worker加载完数据后,调用waitForOtherWorkers()方法等待其他workers都处理完split。

策略如下,每个worker在/_hadoopBsp/job_201404102333_0013/_vertexInputSplitDoneDir目录下创建子节点,后面追加自己的worker信息,如worker1、worker2创建的子节点分别如下:

/_hadoopBsp/job_201404102333_0013/_vertexInputSplitDoneDir/giraphx_1

/_hadoopBsp/job_201404102333_0013/_vertexInputSplitDoneDir/giraphx_2

创建完后,然后等待master创建/_hadoopBsp/job_201404102333_0013/_vertexInputSplitsAllDone。

8、从第5步骤可知,若master发现/_hadoopBsp/job_201404102333_0013/_vertexInputSplitDoneDir下的子节点数目等于workers的总数目,就会在coordinateInputSplits()方法中创建

_hadoopBsp/job_201404102333_0013/_vertexInputSplitsAllDone,告诉每个worker,所有的worker都处理完了split。

9、最后就是就行全局同步。

master创建znode,path=/_hadoopBsp/job_201404102333_0013/_applicationAttemptsDir/0/_superstepDir/-1/_workerFinishedDir ,然后再调用barrierOnWorkerList方法检查该znode的子节点数目是否等于workers的数目,若不等于,则线程陷入等待状态。等待worker创建子节点来激活该线程继续判断。

每个worker获取自身的Partition Stats,进入finishSuperStep方法中,等待所有的Request都被处理完;把自身的Aggregator信息发送给master;创建子节点,如/_hadoopBsp/job_201404102333_0013/_applicationAttemptsDir/0/_superstepDir/-1/_workerFinishedDir/giraphx_1,data为该worker的partitionStatsList和workerSentMessages统计量;

最后调用waitForOtherWorkers()方法等待master创建/_hadoopBsp/job_201404102333_0013/_applicationAttemptsDir/0/_superstepDir/-1/_superstepFinished 节点。

master发现/_hadoopBsp/job_201404102333_0013/_applicationAttemptsDir/0/_superstepDir/-1/_workerFinishedDir的子节点数目等于workers数目后,根据/_hadoopBsp/job_201404102333_0013/_applicationAttemptsDir/0/_superstepDir/-1/_workerFinishedDir子节点上的data收集每个worker发送的aggregator信息,汇总为globalStats。

Master若发现全局信息中(1)所有顶点都voteHalt且没有消息传递,或(2)达到最大迭代次数 时,设置 globalStats.setHaltComputation(true)。告诉works结束迭代。

master创建/_hadoopBsp/job_201404102333_0013/_applicationAttemptsDir/0/_superstepDir/-1/_superstepFinished 节点,data为globalStats。告诉所有workers当前超级步结束。

每个Worker检测到master创建/_hadoopBsp/job_201404102333_0013/_applicationAttemptsDir/0/_superstepDir/-1/_superstepFinished 节点后,读出该znode的数据,即全局的统计信息。然后决定是否继续下一次迭代。

10、同步之后开始下一个超级步。

11、master和workers同步过程总结。

(1)master创建znode A,然后检测A的子节点数目是否等于workers数目,不等于就陷入等待。某个worker创建一个子节点后,就会唤醒master进行检测一次。

(2)每个worker进行自己的工作,完成后,创建A的子节点A1。然后等待master创建znode B。

(3)若master检测到A的子节点数目等于workers的数目时,创建Znode B

(4)master创建B 节点后,会激活各个worker。同步结束,各个worker就可以开始下一个超步。

本质是通过znode B来进行全局同步的。


数澜科技
66 声望8 粉丝

数澜科技致力于搭建世界最先进大数据理念及思想的企业大数据服务平台。为客户提供包括:企业大数据服务体系、数据技术、数据建模及标准化、企业profile、场景化数据产品等在内的大数据应用产品及服务。