简介
ArrayList是一种以数组实现的List,与数组相比,它具有动态扩展的能力,因此也可称之为动态数组。
继承体系
- ArrayList实现了List, RandomAccess, Cloneable, java.io.Serializable等接口。
- ArrayList实现了List,提供了基础的添加、删除、遍历等操作。
- ArrayList实现了RandomAccess,提供了随机访问的能力。
- ArrayList实现了Cloneable,可以被克隆。
- ArrayList实现了Serializable,可以被序列化。
源码分析
/**
* 默认容量, 默认容量为10,也就是通过new ArrayList()创建时的默认容量。
*/
private static final int DEFAULT_CAPACITY = 10;
/**
* 空数组,如果传入的容量为0时使用, 通过new ArrayList(0)创建时用的是这个空数组。
*/
private static final Object[] EMPTY_ELEMENTDATA = {};
/**
* 空数组,传传入容量时使用,添加第一个元素的时候会重新初始为默认容量大小
* 这种是通过new ArrayList()创建时用的是这个空数组,
* 与EMPTY_ELEMENTDATA的区别是在添加第一个元素时使用这个空数组的会初始化为DEFAULT_CAPACITY(10)个元素。
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
/**
* 存储元素的数组
* 真正存放元素的地方,使用transient是为了不序列化这个字段。
*/
transient Object[] elementData; // non-private to simplify nested class access
/**
* 集合中元素的个数
* 真正存储元素的个数,而不是elementData数组的长度。
*/
private int size;
ArrayList(int initialCapacity)构造方法
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
// 如果传入的初始容量大于0,就新建一个数组存储元素
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
// 如果传入的初始容量等于0,使用空数组EMPTY_ELEMENTDATA
this.elementData = EMPTY_ELEMENTDATA;
} else {
// 如果传入的初始容量小于0,抛出异常
throw new IllegalArgumentException("Illegal Capacity: " + initialCapacity);
}
}
ArrayList()构造方法
public ArrayList() {
// 如果没有传入初始容量,则使用空数组DEFAULTCAPACITY_EMPTY_ELEMENTDATA
// 使用这个数组是在添加第一个元素的时候会扩容到默认大小10
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
ArrayList 构造方法
/**
* 把传入集合的元素初始化到ArrayList中
*/
public ArrayList(Collection<? extends E> c) {
// 集合转数组
elementData = c.toArray();
if ((size = elementData.length) != 0) {
// 检查c.toArray()返回的是不是Object[]类型,如果不是,重新拷贝成Object[].class类型
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// 如果c的空集合,则初始化为空数组EMPTY_ELEMENTDATA
this.elementData = EMPTY_ELEMENTDATA;
}
}
这里 c.toArray(); 因为返回的有可能不是Object[]类型,请看下面的代码:
class MyList extends ArrayList<String> {
/**
* 子类重写父类的方法,返回值可以不一样
* 但这里只能用数组类型,换成Object就不行
* 应该算是java本身的bug
*/
@Override
public String[] toArray() {
// 为了方便举例直接写死
return new String[]{"1", "2", "3"};
}
}
add(E e)方法
添加元素到末尾,平均时间复杂度为O(1)。
public boolean add(E e) {
// 检查是否需要扩容
ensureCapacityInternal(size + 1);
// 把元素插入到最后一位
elementData[size++] = e;
return true;
}
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
private static int calculateCapacity(Object[] elementData, int minCapacity) {
// 如果是空数组DEFAULTCAPACITY_EMPTY_ELEMENTDATA,就初始化为默认大小10
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
if (minCapacity - elementData.length > 0)
// 扩容
grow(minCapacity);
}
private void grow(int minCapacity) {
int oldCapacity = elementData.length;
// 新容量为旧容量的1.5倍
int newCapacity = oldCapacity + (oldCapacity >> 1);
// 如果新容量发现比需要的容量还小,则以需要的容量为准
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
// 如果新容量已经超过最大容量了,则使用最大容量
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// 以新容量拷贝出来一个新数组
elementData = Arrays.copyOf(elementData, newCapacity);
}
- 检查是否需要扩容;
- 如果elementData等于DEFAULTCAPACITY_EMPTY_ELEMENTDATA则初始化容量大小为DEFAULT_CAPACITY;
- 新容量是老容量的1.5倍(oldCapacity + (oldCapacity >> 1)),如果加了这么多容量发现比需要的容量还小,则以需要的容量为准;
- 创建新容量的数组并把老数组拷贝到新数组;
add(int index, E element)方法
添加元素到指定位置,平均时间复杂度为O(n)。
public void add(int index, E element) {
// 检查是否越界
rangeCheckForAdd(index);
// 检查是否需要扩容
ensureCapacityInternal(size + 1);
// 将inex及其之后的元素往后挪一位,则index位置处就空出来了
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
// 将元素插入到index的位置
elementData[index] = element;
// 大小增1
size++;
}
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
- 检查索引是否越界;
- 检查是否需要扩容;
- 把插入索引位置后的元素都往后挪一位;
- 在插入索引位置放置插入的元素;
- 大小加1;
addAll 方法
求两个集合的并集。
/**
* 将集合c中所有元素添加到当前ArrayList中
*/
public boolean addAll(Collection<? extends E> c) {
// 将集合c转为数组
Object[] a = c.toArray();
int numNew = a.length;
// 检查是否需要扩容
ensureCapacityInternal(size + numNew);
// 将c中元素全部拷贝到数组的最后
System.arraycopy(a, 0, elementData, size, numNew);
// 大小增加c的大小
size += numNew;
// 如果c不为空就返回true,否则返回false
return numNew != 0;
}
get(int index)方法
获取指定索引位置的元素,时间复杂度为O(1)。
public E get(int index) {
// 检查是否越界
rangeCheck(index);
// 返回数组index位置的元素
return elementData(index);
}
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
E elementData(int index) {
return (E) elementData[index];
}
- 检查索引是否越界,这里只检查是否越上界,如果越上界抛出IndexOutOfBoundsException异常,如果越下界抛出的是ArrayIndexOutOfBoundsException异常。
- 返回索引位置处的元素;
remove(int index)方法
删除指定索引位置的元素,时间复杂度为O(n)。
public E remove(int index) {
// 检查是否越界
rangeCheck(index);
modCount++;
// 获取index位置的元素
E oldValue = elementData(index);
// 如果index不是最后一位,则将index之后的元素往前挪一位
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index, numMoved);
// 将最后一个元素删除,帮助GC
elementData[--size] = null; // clear to let GC do its work
// 返回旧值
return oldValue;
}
- 检查索引是否越界;
- 获取指定索引位置的元素;
- 如果删除的不是最后一位,则其它元素往前移一位;
- 将最后一位置为null,方便GC回收;
- 返回删除的元素。
可以看到,ArrayList删除元素的时候并没有缩容。
remove(Object o)方法
删除指定元素值的元素,时间复杂度为O(n)。
public boolean remove(Object o) {
if (o == null) {
// 遍历整个数组,找到元素第一次出现的位置,并将其快速删除
for (int index = 0; index < size; index++)
// 如果要删除的元素为null,则以null进行比较,使用==
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
// 遍历整个数组,找到元素第一次出现的位置,并将其快速删除
for (int index = 0; index < size; index++)
// 如果要删除的元素不为null,则进行比较,使用equals()方法
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
private void fastRemove(int index) {
// 少了一个越界的检查
modCount++;
// 如果index不是最后一位,则将index之后的元素往前挪一位
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index, numMoved);
// 将最后一个元素删除,帮助GC
elementData[--size] = null; // clear to let GC do its work
}
- 找到第一个等于指定元素值的元素;
- 快速删除;
fastRemove(int index)相对于remove(int index)少了检查索引越界的操作,可见jdk将性能优化到极致。
retainAll方法
求两个集合的交集。
public boolean retainAll(Collection<?> c) {
// 集合c不能为null
Objects.requireNonNull(c);
// 调用批量删除方法,这时complement传入true,表示删除不包含在c中的元素
return batchRemove(c, true);
}
/**
* 批量删除元素
* complement为true表示删除c中不包含的元素
* complement为false表示删除c中包含的元素
*/
private boolean batchRemove(Collection<?> c, boolean complement) {
final Object[] elementData = this.elementData;
// 使用读写两个指针同时遍历数组
// 读指针每次自增1,写指针放入元素的时候才加1
// 这样不需要额外的空间,只需要在原有的数组上操作就可以了
int r = 0, w = 0;
boolean modified = false;
try {
// 遍历整个数组,如果c中包含该元素,则把该元素放到写指针的位置(以complement为准)
for (; r < size; r++)
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
// 正常来说r最后是等于size的,除非c.contains()抛出了异常
if (r != size) {
// 如果c.contains()抛出了异常,则把未读的元素都拷贝到写指针之后
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
if (w != size) {
// 将写指针之后的元素置为空,帮助GC
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
// 新大小等于写指针的位置(因为每写一次写指针就加1,所以新大小正好等于写指针的位置)
size = w;
modified = true;
}
}
// 有修改返回true
return modified;
}
- 遍历elementData数组;
- 如果元素在c中,则把这个元素添加到elementData数组的w位置并将w位置往后移一位;
- 遍历完之后,w之前的元素都是两者共有的,w之后(包含)的元素不是两者共有的;
- 将w之后(包含)的元素置为null,方便GC回收;
removeAll
求两个集合的单方向差集,只保留当前集合中不在c中的元素,不保留在c中不在当前集体中的元素。
public boolean removeAll(Collection<?> c) {
// 集合c不能为空
Objects.requireNonNull(c);
// 同样调用批量删除方法,这时complement传入false,表示删除包含在c中的元素
return batchRemove(c, false);
}
总结
- ArrayList内部使用数组存储元素,当数组长度不够时进行扩容,每次加一半的空间,ArrayList不会进行缩容;
- ArrayList支持随机访问,通过索引访问元素极快,时间复杂度为O(1);
- ArrayList添加元素到尾部极快,平均时间复杂度为O(1);
- ArrayList添加元素到中间比较慢,因为要搬移元素,平均时间复杂度为O(n);
- ArrayList从尾部删除元素极快,时间复杂度为O(1);
- ArrayList从中间删除元素比较慢,因为要搬移元素,平均时间复杂度为O(n);
- ArrayList支持求并集,调用addAll(Collection<? extends E> c)方法即可;
- ArrayList支持求交集,调用retainAll(Collection<? extends E> c)方法即可;
- ArrayList支持求单向差集,调用removeAll(Collection<? extends E> c)方法即可;
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。