海量日志数据,提取出某日访问次数最多的那个IP。

思路:分而治之/hash映射 + hash统计 + 堆/快速/归并排序

  • 映射
  • 统计
  • 排序
  1. 分而治之/hash映射:针对数据太大,内存受限,只能是:把大文件化成(取模映射)小文件,即16字方针:大而化小,各个击破,缩小规模,逐个解决
  2. hash_map统计:当大文件转化了小文件,那么我们便可以采用常规的hash_map(ip,value)来进行频率统计。
  3. 堆/快速排序:统计完了之后,便进行排序(可采取堆排序),得到次数最多的IP。

TOP K问题

搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门),统计最热门的10个查询串,要求使用的内存不能超过1G

解决方案1,分而治之:

数据大则划为小的,如如一亿个Ip求Top 10,可先%1000将ip分到1000个小文件中去,并保证一种ip只出现在一个文件中,再对每个小文件中的ip进行hashmap计数统计并按数量排序,最后归并或者最小堆依次处理每个小文件的top10即可。

解决方案2,装入内存处理:

但如果数据规模比较小,能一次性装入内存呢?虽然有一千万个Query,但是由于重复度比较高,因此事实上只有300万的Query,每个Query255Byte,因此我们可以考虑把他们都放进内存中去(300万个字符串假设没有重复,都是最大长度,那么最多占用内存3M*1K/4=0.75G。所以可以将所有字符串都存放在内存中进行处理),而现在只是需要一个合适的数据结构,在这里,HashTable是优先的选择。

所以我们放弃分而治之/hash映射的步骤,直接上hash统计,然后排序。S针对此类典型的TOP K问题,采取的对策往往是:hashmap + 堆。如下所示:

  1. hash_map统计:先对这批海量数据预处理。具体方法是:维护一个Key为Query字串,Value为该Query出现次数的HashTable,即hash_map(Query,Value),每次读取一个Query,如果该字串不在Table中,那么加入该字串,并且将Value值设为1;如果该字串在Table中,那么将该字串的计数加一即可。最终我们在O(N)的时间复杂度内用Hash表完成了统计;
  2. 堆排序:第二步、借助堆这个数据结构,找出Top K,时间复杂度为N‘logK。即借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比。所以,我们最终的时间复杂度是:O(N) + N' * O(logK),(N为1000万,N’为300万)。
具体来说,“维护k个元素的最小堆,即用容量为k的小顶堆存储最先遍历到的k个数,并假设它们即是最大的k个数,建堆费时O(k),并调整堆(费时O(logk))后,有k1>k2>...kmin(kmin设为小顶堆中最小元素)。继续遍历数列,每次遍历一个元素x,与堆顶元素比较,若x>kmin,则更新堆(x入堆,用时logk),否则不更新堆。这样下来,总费时O(klogk+(n-k)logk)=O(n*logk)。此方法得益于在堆中,查找等各项操作时间复杂度均为logk。”

TOP10小,用最大堆,TOP10大,用最小堆,比如取TOP10大,首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元素就是TOP10大

内存受限的情况

有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。
      
  1. 分而治之/hash映射:顺序读文件中,对于每个词x,取hash(x)%5000,然后按照该值存到5000个小文件(记为x0,x1,...x4999)中。这样每个文件大概是200k左右。如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。
  2. hash_map统计:对每个小文件,采用trie树/hash_map等统计每个文件中出现的词以及相应的频率。
  3. 堆/归并排序:取出出现频率最大的100个词(可以用含100个结点的最小堆)后,再把100个词及相应的频率存入文件,这样又得到了5000个文件。最后就是把这5000个文件进行归并(类似于归并排序)的过程了。

寻找交集

给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,找出a、b文件共同的url?

可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。

  1. 分而治之/hash映射:遍历文件a,对每个url求取,然后根据所取得的值将url分别存储到1000个小文件(a1, a2, ..., a1000)中。这样每个小文件的大约为300M。遍历文件b,采取和a相同的方式将url分别存储到1000小文件中(b1,b2,...,b1000)。这样处理后,所有可能相同的url都在对应的小文件(a1 vs b1, a2 vs b2, ..., a1000 vs b1000)中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。
  2. hash_set统计:求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

bitmap

什么是bitmap

所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素。由于采用了Bit为单位来存储数据,因此在存储空间方面,可以大大节省。

一个具体的例子,假设我们要对0-7内的5个元素(4,7,2,5,3)排序(这里假设这些元素没有重复)。那么我们就可以采用Bit-map的方法来达到排序的目的。要表示8个数,我们就只需要8个Bit(1Bytes),首先我们开辟1Byte的空间,将这些空间的所有Bit位都置为0
image.png

然后遍历这5个元素,首先第一个元素是4,那么就把4对应的位置为1(可以这样操作 p+(i/8)|(0×01<<(i%8)) 当然了这里的操作涉及到Big-ending和Little-ending的情况,这里默认为Big-ending),因为是从零开始的,所以要把第五位置为1:
image.png

     

然后再处理第二个元素7,将第八位置为1,,接着再处理第三个元素,一直到最后处理完所有的元素,将相应的位置为1,这时候的内存的Bit位的状态如下:
image.png

然后我们现在遍历一遍Bit区域,将该位是一的位的编号输出(2,3,4,5,7),这样就达到了排序的目的。

实例

已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。 (可以理解为从0-99 999 999的数字,每个数字对应一个Bit位,所以只需要99M个Bit==1.2MBytes,这样,就用了小小的1.2M左右的内存表示了所有的8位数的电话)

2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

    将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上,在遍历这些数的时候,如果对应位置的值是0,则将其置为1;如果是1,将其置为2;如果是2,则保持不变。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map,都是一样的道理。

bitmap的golang实现

1个int占4字节即4*8=32位,那么我们只需要申请一个int数组长度为 int tmp[1+N/32]即可存储完这些数据,其中N代表要进行查找的总数,tmp中的每个元素在内存在占32位可以对应表示十进制数0~31,所以可得到BitMap表:

tmp[0]:可表示0~31

tmp[1]:可表示32~63

tmp[2]可表示64~95

如何判断int数字在tmp数组的哪个下标?

这个其实可以通过直接除以32取整数部分,例如:整数8除以32取整等于0,那么8就在tmp[0]上。另外,我们如何知道了8在tmp[0]中的32个位中的哪个位,这种情况直接mod上32就ok,又如整数8,在tmp[0]中的第8 mod上32等于8,那么整数8就在tmp[0]中的第八个bit位(从右边数起)。

package bitmap

import (
    "bytes"
    "fmt"
)

type Bitmap struct {
    words  []uint64
    length int
}

func New() *Bitmap {
    return &Bitmap{}
}
func (bitmap *Bitmap) Has(num int) bool {
    word, bit := num/64, uint(num%64)
    return word < len(bitmap.words) && (bitmap.words[word]&(1<<bit)) != 0
}

func (bitmap *Bitmap) Add(num int) {
    word, bit := num/64, uint(num%64)
    for word >= len(bitmap.words) {
        bitmap.words = append(bitmap.words, 0)
    }
    // 判断num是否已经存在bitmap中
    if bitmap.words[word]&(1<<bit) == 0 {
        bitmap.words[word] |= 1 << bit
        bitmap.length++
    }
}

func (bitmap *Bitmap) Len() int {
    return bitmap.length
}

参考文章

https://blog.csdn.net/v_july_...
https://blog.csdn.net/v_july_...
https://zhuanlan.zhihu.com/p/...


byte
106 声望13 粉丝

引用和评论

0 条评论