清除操作的定义

  • void clear()

    • 将树中所有的结点清除(释放堆中的结点)

树中数据元素的清除

image.png

清除操作功能的定义

  • free(node)

    • 清除 node 为根结点的树
    • 释放树中的每一个结点

image.png

编程实验:清除树中的结点

文件:GTree.h

#ifndef GTREE_H
#define GTREE_H

#include "Tree.h"
#include "GTreeNode.h"
#include "Exception.h"

namespace DTLib
{

template <typename T>
class GTree : public Tree<T>
{
public:
    bool insert(TreeNode<T> *node) override
    {
        bool ret = true;

        if (node != nullptr)
        {
            if (this->m_root == nullptr)
            {
                node->parent = nullptr;
                this->m_root = node;
            }
            else
            {
                GTreeNode<T> *np = find(node->parent);

                if (np != nullptr)
                {
                    GTreeNode<T> *n = dynamic_cast<GTreeNode<T>*>(node);

                    if (np->child.find(n) < 0)
                    {
                        np->child.insert(n);
                    }
                }
                else
                {
                    THROW_EXCEPTION(InvalidOpertionExcetion, "Invalid partent tree node ...");
                }
            }
        }
        else
        {
            THROW_EXCEPTION(InvalidParameterExcetion, "Parameter node cannot be NULL ...");
        }

        return ret;
    }

    bool insert(const T &value, TreeNode<T> *parent) override
    {
        bool ret = true;

        GTreeNode<T> *node = new GTreeNode<T>();

        if (node != nullptr)
        {
            node->value = value;
            node->parent = parent;

            insert(node);
        }
        else
        {
            THROW_EXCEPTION(NoEnoughMemoryException, "No enough memory to create node ...");
        }

        return ret;
    }

    SharedPointer<Tree<T>> remove(const T &value) override
    {
        return nullptr;
    }

    SharedPointer<Tree<T>> remove(TreeNode<T> *node) override
    {
        return nullptr;
    }

    GTreeNode<T>* find(const T &value) const override
    {
        return find(root(), value);
    }

    GTreeNode<T>* find(TreeNode<T> *node) const override
    {
       return find(root(), dynamic_cast<GTreeNode<T>*>(node));
    }

    GTreeNode<T>* root() const override
    {
        return dynamic_cast<GTreeNode<T>*>(this->m_root);
    }

    int degree() const override
    {
        return 0;
    }

    int count() const override
    {
        return 0;
    }

    int height() const override
    {
        return 0;
    }

    void clear() override
    {
        free(root());

        this->m_root = nullptr;
    }

    ~GTree()
    {
        clear();
    }

protected:
    GTreeNode<T> *find(GTreeNode<T>* node, const T &value) const
    {
        GTreeNode<T> *ret = nullptr;

        if (node != nullptr)
        {
            if (node->value == value)
            {
                return node;
            }
            else
            {
                for (node->child.move(0); !node->child.end() && (ret == nullptr); node->child.next())
                {
                    ret = find(node->child.current(), value);
                }
            }
        }

        return ret;
    }

    GTreeNode<T> *find(GTreeNode<T>* node, GTreeNode<T> *obj) const
    {
        GTreeNode<T> *ret = nullptr;

        if (node == obj)
        {
            return node;
        }
        else
        {
            if (node != nullptr)
            {
                for (node->child.move(0); !node->child.end() && (ret == nullptr); node->child.next())
                {
                    ret = find(node->child.current(), obj);
                }
            }
        }

        return ret;
    }

    void free(GTreeNode<T> *node)
    {
        if (node != nullptr)
        {
            for (node->child.move(0); !node->child.end(); node->child.next())
            {
                free(node->child.current());
            }

            delete node;
        }
    }
};

}

#endif // GTREE_H

问题

树中的结点可能来源于不同的存储空间,如何判断堆空间中的结点并释放?
void func()
{
    GTree<char> t; 
    
    GTreeNode<char> root;        
    root.value = 'A';
    root.parent = nullptr;
    
    t.insert(&root);            // 栈空间结点
    
    t.insert('B', t.find('A')); // 堆空间结点

    t.clear();                  // 注意:非堆空间中结点不应被释放!!
}

问题分析

  • 单凭内存地址很难准确判断具体的存储区域
  • 只有堆空间的内存需要主动释放 (delete)
  • 清除操作时只需要对堆中的结点进行释放

解决方案:工厂模式

  • 在 GTreeNode 中增加保护成员变量 m_flag
  • 将 GTreeNode 中的 operator new 重载为保护成员(禁止类外部 new 结点)
  • 提供工厂方法 GTreeNode<T> *NewNode()
  • 在工厂方法中 new 新结点并将 m_flag 设置为 true

树结点的工厂模式示例

image.png

GtreeNode<int> *hn = GTreeNode<int>::NewNode();
GTreeNode<int> sn;

if (hn->flag())  // true
{
    delete hn;
}

hn = &sn;

if (hn->flag())  // false
{
    delete hn;
}

编程实验

文件:GTreeNode.h

#ifndef GTREENODE_H
#define GTREENODE_H

#include "TreeNode.h"
#include "LinkList.h"

namespace DTLib
{

template <typename T>
class GTreeNode : public TreeNode<T>
{
public:
    LinkList<GTreeNode<T>*> child;

    bool flag()
    {
        return m_flag;
    }

    static GTreeNode<T>* NewNode()
    {
        GTreeNode<T> *ret = new GTreeNode<T>();

        if (ret != nullptr)
        {
            ret->m_flag = true;
        }

        return ret;
    }

protected:
    bool m_flag = false;

    void *operator new (unsigned int size) noexcept(true)
    {
        return Object::operator new(size);
    }
};

}

#endif // GTREENODE_H

文件:GTree.h

#ifndef GTREE_H
#define GTREE_H

#include "Tree.h"
#include "GTreeNode.h"
#include "Exception.h"

namespace DTLib
{

template <typename T>
class GTree : public Tree<T>
{
public:
    bool insert(TreeNode<T> *node) override
    {
        bool ret = true;

        if (node != nullptr)
        {
            if (this->m_root == nullptr)
            {
                node->parent = nullptr;
                this->m_root = node;
            }
            else
            {
                GTreeNode<T> *np = find(node->parent);

                if (np != nullptr)
                {
                    GTreeNode<T> *n = dynamic_cast<GTreeNode<T>*>(node);

                    if (np->child.find(n) < 0)
                    {
                        np->child.insert(n);
                    }
                }
                else
                {
                    THROW_EXCEPTION(InvalidOpertionExcetion, "Invalid partent tree node ...");
                }
            }
        }
        else
        {
            THROW_EXCEPTION(InvalidParameterExcetion, "Parameter node cannot be NULL ...");
        }

        return ret;
    }

    bool insert(const T &value, TreeNode<T> *parent) override
    {
        bool ret = true;

        GTreeNode<T> *node = GTreeNode<T>::NewNode();

        if (node != nullptr)
        {
            node->value = value;
            node->parent = parent;

            insert(node);
        }
        else
        {
            THROW_EXCEPTION(NoEnoughMemoryException, "No enough memory to create node ...");
        }

        return ret;
    }

    SharedPointer<Tree<T>> remove(const T &value) override
    {
        return nullptr;
    }

    SharedPointer<Tree<T>> remove(TreeNode<T> *node) override
    {
        return nullptr;
    }

    GTreeNode<T>* find(const T &value) const override
    {
        return find(root(), value);
    }

    GTreeNode<T>* find(TreeNode<T> *node) const override
    {
       return find(root(), dynamic_cast<GTreeNode<T>*>(node));
    }

    GTreeNode<T>* root() const override
    {
        return dynamic_cast<GTreeNode<T>*>(this->m_root);
    }

    int degree() const override
    {
        return 0;
    }

    int count() const override
    {
        return 0;
    }

    int height() const override
    {
        return 0;
    }

    void clear() override
    {
        free(root());

        this->m_root = nullptr;
    }

    ~GTree()
    {
        clear();
    }

protected:
    GTreeNode<T> *find(GTreeNode<T>* node, const T &value) const
    {
        GTreeNode<T> *ret = nullptr;

        if (node != nullptr)
        {
            if (node->value == value)
            {
                return node;
            }
            else
            {
                for (node->child.move(0); !node->child.end() && (ret == nullptr); node->child.next())
                {
                    ret = find(node->child.current(), value);
                }
            }
        }

        return ret;
    }

    GTreeNode<T> *find(GTreeNode<T>* node, GTreeNode<T> *obj) const
    {
        GTreeNode<T> *ret = nullptr;

        if (node == obj)
        {
            return node;
        }
        else
        {
            if (node != nullptr)
            {
                for (node->child.move(0); !node->child.end() && (ret == nullptr); node->child.next())
                {
                    ret = find(node->child.current(), obj);
                }
            }
        }

        return ret;
    }

    void free(GTreeNode<T> *node)
    {
        if (node != nullptr)
        {
            for (node->child.move(0); !node->child.end(); node->child.next())
            {
                free(node->child.current());
            }

            if (node->flag())
            {
                delete node;
            }
        }
    }
};

}

#endif // GTREE_H

小结

  • 清除操作用于销毁树中的每个结点
  • 销毁结点时需要决定是否释放对应的内存空间
  • 工厂模式可用于 "定制" 堆空间中的结点
  • 只有销毁定制结点的时候需要进行释放

To be continued

思考: 如何实现 GTree (通用树结构) 的结点删除操作?
SharedPointer<Tree<T>> remove(const T &value) override
{
    GTreeNode<T> *ret = NULL;
    
    // ...
    
    return ret;
}

SharedPointer<Tree<T>> remove(TreeNode<T> *node) override
{
    GTreeNode<T> *ret = NULL;
    
    // ...
    
    return ret;
}

以上内容整理于狄泰软件学院系列课程,请大家保护原创!


TianSong
734 声望138 粉丝

阿里山神木的种子在3000年前已经埋下,今天不过是看到当年注定的结果,为了未来的自己,今天就埋下一颗好种子吧