二叉树的遍历
二叉树的遍历 (Traversing Binay Tree) 是指从根结点出发,按照某种次序依次访问二叉树中的所有结点,使得每个结点被访问一次,且仅被访问一次。
问题
通用树结构的层次遍历算法是否可以用在二叉树结构上?如果可以,代码需要做怎样的改动?
设计思路
提供一组遍历相关的函数,按层次访问二叉树中的数据元素
函数 | 功能说明 |
begin() | 初始化,准备进行遍历访问 |
next() | 移动游标,指向下一个结点 |
current() | 获取游标所指向的数据元素 |
end() | 判断游标是否到达尾部 |
层次遍历算法
- 原料: class LinkQueue<T>;
- 游标: LinkQueue<T>::front();
思想:
- begin() → 将根结点压入队列
- current() → 访问队头元素指向的数据元素
- next() → 队头元素弹出,将队头元素的孩子压入队列中(核心)
- end() → 判断队列是否为空
层次遍历算法示例
编程实验:二叉树结构的层次遍历
【重构】文件:Tree.h
#ifndef TREE_H
#define TREE_H
#include "Object.h"
#include "TreeNode.h"
#include "SharedPointer.h"
namespace DTLib
{
template <typename T>
class Tree : public Object
{
public:
Tree() = default;
virtual bool insert(TreeNode<T> *node) = 0;
virtual bool insert(const T &value, TreeNode<T> *parent) = 0;
virtual SharedPointer<Tree<T>> remove(const T &value) = 0;
virtual SharedPointer<Tree<T>> remove(TreeNode<T> *node) = 0;
virtual TreeNode<T>* find(const T &value) const = 0;
virtual TreeNode<T>* find(TreeNode<T> *node) const = 0;
virtual TreeNode<T>* root() const = 0;
virtual int degree() const = 0;
virtual int count() const = 0;
virtual int height() const = 0;
virtual void clear() = 0;
virtual bool begin() = 0;
virtual bool end() = 0;
virtual bool next() = 0;
virtual T current() = 0;
protected:
TreeNode<T> *m_root = nullptr;
};
}
#endif // TREE_H
【重构】文件:GTree.h
#ifndef GTREE_H
#define GTREE_H
#include "Tree.h"
#include "GTreeNode.h"
#include "Exception.h"
#include "LinkQueue.h"
namespace DTLib
{
template <typename T>
class GTree : public Tree<T>
{
public:
GTree() = default;
bool insert(TreeNode<T> *node) override
{
bool ret = true;
if (node != nullptr)
{
if (this->m_root == nullptr)
{
node->parent = nullptr;
this->m_root = node;
}
else
{
GTreeNode<T> *np = find(node->parent);
if (np != nullptr)
{
GTreeNode<T> *n = dynamic_cast<GTreeNode<T>*>(node);
if (np->child.find(n) < 0)
{
np->child.insert(n);
}
}
else
{
THROW_EXCEPTION(InvalidOpertionExcetion, "Invalid partent tree node ...");
}
}
}
else
{
THROW_EXCEPTION(InvalidParameterExcetion, "Parameter node cannot be NULL ...");
}
return ret;
}
bool insert(const T &value, TreeNode<T> *parent) override
{
bool ret = true;
GTreeNode<T> *node = GTreeNode<T>::NewNode();
if (node != nullptr)
{
node->value = value;
node->parent = parent;
insert(node);
}
else
{
THROW_EXCEPTION(NoEnoughMemoryException, "No enough memory to create node ...");
}
return ret;
}
SharedPointer<Tree<T>> remove(const T &value) override
{
GTree<T> *ret = nullptr;
GTreeNode<T> *node = find(value);
if (node != nullptr)
{
remove(node, ret);
m_queue.clear();
}
else
{
THROW_EXCEPTION(InvalidParameterExcetion, "can not find the node ...");
}
return ret;
}
SharedPointer<Tree<T>> remove(TreeNode<T> *node) override
{
GTree<T> *ret = nullptr;
node = find(node);
if (node != nullptr)
{
remove(dynamic_cast<GTreeNode<T>*>(node), ret);
m_queue.clear();
}
else
{
THROW_EXCEPTION(InvalidParameterExcetion, "Parameter node is invalid ...");
}
return ret;
}
GTreeNode<T>* find(const T &value) const override
{
return find(root(), value);
}
GTreeNode<T>* find(TreeNode<T> *node) const override
{
return find(root(), dynamic_cast<GTreeNode<T>*>(node));
}
GTreeNode<T>* root() const override
{
return dynamic_cast<GTreeNode<T>*>(this->m_root);
}
int degree() const override
{
return degree(root());
}
int count() const override
{
return count(root());
}
int height() const override
{
return height(root());
}
void clear() override
{
free(root());
this->m_root = nullptr;
m_queue.clear();
}
bool begin() override
{
bool ret = (root() != nullptr);
if (ret)
{
m_queue.clear();
m_queue.add(root());
}
return ret;
}
bool end() override
{
return (m_queue.length() == 0);
}
bool next() override
{
bool ret = (m_queue.length() > 0);
if (ret)
{
GTreeNode<T> *node = m_queue.front();
m_queue.remove();
for (node->child.move(0); !node->child.end(); node->child.next())
{
m_queue.add(node->child.current());
}
}
return ret;
}
T current() override
{
if (!end())
{
return m_queue.front()->value;
}
else
{
THROW_EXCEPTION(InvalidOpertionExcetion, "No value at current position ...");
}
}
~GTree()
{
clear();
}
protected:
LinkQueue<GTreeNode<T>*> m_queue;
GTree(const GTree<T>&) = default;
GTree<T>& operator = (const GTree<T>&) = default;
GTreeNode<T> *find(GTreeNode<T>* node, const T &value) const
{
GTreeNode<T> *ret = nullptr;
if (node != nullptr)
{
if (node->value == value)
{
return node;
}
else
{
for (node->child.move(0); !node->child.end() && (ret == nullptr); node->child.next())
{
ret = find(node->child.current(), value);
}
}
}
return ret;
}
GTreeNode<T> *find(GTreeNode<T>* node, GTreeNode<T> *obj) const
{
GTreeNode<T> *ret = nullptr;
if (node == obj)
{
return node;
}
else
{
if (node != nullptr)
{
for (node->child.move(0); !node->child.end() && (ret == nullptr); node->child.next())
{
ret = find(node->child.current(), obj);
}
}
}
return ret;
}
void free(GTreeNode<T> *node)
{
if (node != nullptr)
{
for (node->child.move(0); !node->child.end(); node->child.next())
{
free(node->child.current());
}
if (node->flag())
{
delete node;
}
}
}
void remove(GTreeNode<T> *node, GTree<T> *&ret)
{
ret = new GTree<T>();
if (ret != nullptr)
{
if (node == root())
{
this->m_root = nullptr;
}
else
{
GTreeNode<T> *parent = dynamic_cast<GTreeNode<T>*>(node->parent);
parent->child.remove(parent->child.find(node));
node->parent = nullptr;
}
ret->m_root = node;
}
else
{
THROW_EXCEPTION(NoEnoughMemoryException, "No enough memory to create tree ...");
}
}
int count(GTreeNode<T> *node) const
{
int ret = 0;
if (node != nullptr)
{
ret = 1;
for (node->child.move(0); !node->child.end(); node->child.next())
{
ret += count(node->child.current());
}
}
return ret;
}
int height(GTreeNode<T> *node) const
{
int ret = 0;
if (node != nullptr)
{
for (node->child.move(0); !node->child.end(); node->child.next())
{
int h = height(node->child.current());
if (ret < h)
{
ret = h;
}
}
ret += 1;
}
return ret;
}
int degree(GTreeNode<T> *node) const
{
int ret = 0;
if (node != nullptr)
{
ret = node->child.length();
for (node->child.move(0); !node->child.end(); node->child.next())
{
int d = degree(node->child.current());
if (ret < d)
{
ret = d;
}
}
}
return ret;
}
};
}
#endif // GTREE_H
文件:BTree.h
#ifndef BTREE_H
#define BTREE_H
#include "Tree.h"
#include "BTreeNode.h"
#include "Exception.h"
#include "LinkQueue.h"
namespace DTLib
{
template <typename T>
class BTree : public Tree<T>
{
public:
BTree() = default;
bool insert(TreeNode<T> *node) override
{
return insert(node, ANY);
}
virtual bool insert(TreeNode<T> *node, BTNodePos pos)
{
bool ret = true;
if (node != nullptr)
{
if (this->m_root == nullptr)
{
node->parent = nullptr;
this->m_root = node;
}
else
{
BTreeNode<T> *np = find(node->parent);
if (np != nullptr)
{
ret = insert(dynamic_cast<BTreeNode<T>*>(node), np, pos);
}
else
{
THROW_EXCEPTION(InvalidParameterExcetion, "Invalid parent tree node ...");
}
}
}
else
{
THROW_EXCEPTION(InvalidParameterExcetion, "Parameter can not be null ...");
}
return ret;
}
bool insert(const T &value, TreeNode<T> *parent) override
{
return insert(value, parent, ANY);
}
virtual bool insert(const T &value, TreeNode<T> *parent, BTNodePos pos)
{
bool ret = true;
BTreeNode<T> *node = BTreeNode<T>::NewNode();
if (node != nullptr)
{
node->value = value;
node->parent = parent;
ret = insert(node, pos);
if (!ret)
{
delete node;
}
}
else
{
THROW_EXCEPTION(NoEnoughMemoryException, "No enough memory to create node ...");
}
return ret;
}
SharedPointer<Tree<T>> remove(const T &value) override
{
BTree<T> *ret = nullptr;
BTreeNode<T> *node = find(value);
if (node != nullptr)
{
remove(node, ret);
m_queue.clear();
}
else
{
THROW_EXCEPTION(InvalidParameterExcetion, "Can not find the tree node via value ...");
}
return ret;
}
SharedPointer<Tree<T>> remove(TreeNode<T> *node) override
{
BTree<T> *ret = nullptr;
node = find(node);
if (node != nullptr)
{
remove(dynamic_cast<BTreeNode<T>*>(node), ret);
m_queue.clear();
}
else
{
THROW_EXCEPTION(InvalidParameterExcetion, "Parameter node is invalid ...");
}
return ret;
}
BTreeNode<T>* find(const T &value) const override
{
return find(root(), value);
}
BTreeNode<T>* find(TreeNode<T> *node) const override
{
return find(root(), dynamic_cast<BTreeNode<T>*>(node));
}
BTreeNode<T>* root() const override
{
return dynamic_cast<BTreeNode<T>*>(this->m_root);
}
int degree() const override
{
return degree(root());
}
int count() const override
{
return count(root());
}
int height() const override
{
return height(root());
}
void clear() override
{
free(root());
this->m_root = nullptr;
}
bool begin() override
{
bool ret = (root() != nullptr);
if (ret)
{
m_queue.clear();
m_queue.add(root());
}
return ret;
}
bool end() override
{
return (m_queue.length() == 0);
}
bool next() override
{
bool ret = (m_queue.length() > 0);
if (ret)
{
BTreeNode<T> *node = m_queue.front();
m_queue.remove();
if (node->left != nullptr)
{
m_queue.add(node->left);
}
if (node->right != nullptr)
{
m_queue.add(node->right);
}
}
return ret;
}
T current() override
{
if (!end())
{
return m_queue.front()->value;
}
else
{
THROW_EXCEPTION(InvalidOpertionExcetion, "No value at current position ...");
}
}
~BTree()
{
clear();
}
protected:
LinkQueue<BTreeNode<T>*> m_queue;
BTree(const BTree<T>&) = default;
BTree<T>& operator = (const BTree<T>&) = default;
virtual BTreeNode<T>* find(BTreeNode<T> *node, const T &value) const
{
BTreeNode<T> *ret = nullptr;
if (node != nullptr)
{
if (node->value == value)
{
ret = node;
}
else
{
if (ret == nullptr)
{
ret = find(node->left, value);
}
if (ret == nullptr)
{
ret = find(node->right, value);
}
}
}
return ret;
}
virtual BTreeNode<T>* find(BTreeNode<T> *node, BTreeNode<T> *obj) const
{
BTreeNode<T> *ret = nullptr;
if (node == obj)
{
ret = node;
}
else
{
if (node != nullptr)
{
if (ret == nullptr)
{
ret = find(node->left, obj);
}
if (ret == nullptr)
{
ret = find(node->right, obj);
}
}
}
return ret;
}
virtual bool insert(BTreeNode<T> *node, BTreeNode<T> *np, BTNodePos pos)
{
bool ret = true;
if (pos == ANY)
{
if (np->left == nullptr)
{
np->left = node;
}
else if (np->right == nullptr)
{
np->right = node;
}
else
{
ret = false;
}
}
else if (pos == LEFT)
{
if (np->left == nullptr)
{
np->left = node;
}
else
{
ret = false;
}
}
else if (pos == RIGHT)
{
if (np->right == nullptr)
{
np->right = node;
}
else
{
ret = false;
}
}
return ret;
}
virtual void remove(BTreeNode<T> *node, BTree<T> *&ret)
{
ret = new BTree<T>();
if (ret != nullptr)
{
if (root() == node)
{
this->m_root = nullptr;
}
else
{
BTreeNode<T> *parent = dynamic_cast<BTreeNode<T>*>(node->parent);
if (node == parent->left)
{
parent->left = nullptr;
}
else if (node == parent->right)
{
parent->right = nullptr;
}
node->parent = nullptr;
}
ret->m_root = node;
}
else
{
THROW_EXCEPTION(NoEnoughMemoryException, "No memory to create btree ...");
}
}
virtual void free(BTreeNode<T> *node)
{
if (node != nullptr)
{
free(node->left);
free(node->right);
if (node->flag())
{
delete node;
}
}
}
int count(BTreeNode<T> *node) const
{
return (node != nullptr) ? (count(node->left) + count(node->right) + 1) : 0;
}
int height(BTreeNode<T> *node) const
{
int ret = 0;
if (node != nullptr)
{
int lh = height(node->left);
int rh = height(node->right);
ret = ((lh > rh) ? lh : rh) + 1;
}
return ret;
}
int degree(BTreeNode<T> *node) const
{
int ret = 0;
if (node != nullptr)
{
BTreeNode<T> *child[] = {node->left, node->right};
ret = !!node->left + !!node->left;
for (int i=0; (i<2) && (ret<2); ++i)
{
int d = degree(child[i]);
if (ret < d)
{
ret = d;
}
}
}
return ret;
}
};
}
#endif // BTREE_H
文件:main.cpp
#include <iostream>
#include "BTreeNode.h"
#include "BTree.h"
using namespace std;
using namespace DTLib;
int main()
{
BTree<int> bt;
BTreeNode<int> *n = nullptr;
bt.insert(1, nullptr);
n = bt.find(1);
bt.insert(2, n);
bt.insert(3, n);
n = bt.find(2);
bt.insert(4, n);
bt.insert(5, n);
n = bt.find(4);
bt.insert(8, n);
bt.insert(9, n);
n = bt.find(5);
bt.insert(10, n);
n = bt.find(3);
bt.insert(6, n);
bt.insert(7, n);
for (bt.begin(); !bt.end(); bt.next())
{
cout << bt.current() << " ";
}
cout << endl;
return 0;
}
输出:
1 2 3 4 5 6 7 8 9 10
To be continued
思考:BTree (二叉树结构) 是否只有一种遍历的方法?
以上内容整理于狄泰软件学院系列课程,请大家保护原创!
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。