不下降序列问题

设由n个数组成的数列,即为:a[1]、a[2],...、a[n],若存在i1<i2<...im 满足:
a[i1] <= a[i2]<= ... <= [aim],则称为长度为m的不下降序列。

例如:3,18,7,14,10,12,23,41,16,24
则:
> 3,18,23,24 是一个长度为4的不下降序列
> 3,7,10,12,16,24 是一个长度为6的不下降序列

问:
    如何求最长不下降序列?
    如何求所有不下降序列?
    如何求指定长度不下降序列?
关键点: 相对位置不变; 不下降。

问题建模

  • 使用数列中的元素和元素间的关系建立图模型 [重要]

    • 图中顶点的附加数据为对应的数列元素值
    • 图中的边按照如下方式建立

      • 当数列中的某个元素与后序元素存在不下降关系时

        • 从该元素对应的顶点到后继元素对应的顶点存在一条有向边
        • 边的权值固定为 1

建模示例

1, 3, 4, 2, 5

image.png

SharedPointer<Graph<int, int>> create_graph(int *a, int len)
{
    ListGraph<int, int> *ret = new ListGraph<int, int>(len);

    if (ret != nullptr)
    {
        for (int i=0; i<len; ++i)
        {
            ret->setVertex(i, a[i]);
        }

        for (int i=0; i<len; ++i)
        {
            for (int j=i+1; j<len; ++j)  // j = i + 1; ==> 保证相对位置不变 !!
            {
                if (a[i] <= a[j])        // 保证有序不下降
                {
                    ret->setEdge(i, j, 1);
                }
            }
        }
    }
    else
    {
        THROW_EXCEPTION(NoEnoughMemoryException, "No memory to create graph ...");
    }

    return ret;
}

求最多顶点路径

  • 以每个顶点作为起始顶点寻找局部最多顶点路径

    • v0→p0, v1→p1, ......, vn-1→pn-1
  • 寻找全局最多顶点的路径

    • pm = max { p0, p1, ......, pn-1 }

局部最多顶点数路径的求解思路

  • 获取当前顶点 v 的邻接顶点 {aj0, aj1, ......}
  • 以各邻接顶点为起始顶点求解最多顶点路径 {paj0, paj1, ......}
  • pv = max {paj0, paj1, ......} + 1

image.png

原材料

  • Array<int> count;

    • count[i] 表示以 i 起始的最多顶点路径上的顶点数
  • Array<int> path;

    • path[i] 表示以 i 起始的最多顶点路径上经过的第一个顶点
  • Array<bool> mark;

    • 如果 i 起始的最多顶点路径已经找到,则: mark[i] 为 true
void init_array(Array<int> &count, Array<int> &path, Array<bool> &mark)
{
    for (int i=0; i<count.length(); ++i)
    {
        count[i] = 0;
    }

    for (int i=0; i<path.length(); ++i)
    {
        path[i] = -1;
    }

    for (int i=0; i<mark.length(); ++i)
    {
        mark[i] = false;
    }
}

寻找局部顶点数最多的路径

  • 定义功能: search_max_path(v, count, path, mark)

    • 以 v 作为起始顶点寻找最多顶点路径
    • count 记录经过的最多定点数
    • path 记录最多顶点路径上经过的第一个顶点
    • mark 记录最多顶点路径是否已经找到

编程实验:局部最多顶点路径

// 求解局部最短路径
int search_max_path(Graph<int, int> &g, int v, Array<int> &count, Array<int> &path, Array<bool> &mark)
{
    int ret = 0;
    int k = -1;

    SharedPointer<Array<int>> aj = g.getAdjacent(v);

    for (int i=0; i<aj->length(); ++i)
    {
        int num = 0;

        if (!mark[(*aj)[i]])
        {
            num = search_max_path(g, (*aj)[i], count, path, mark);
        }
        else
        {
            num = count[(*aj)[i]];
        }

        if (ret < num)
        {
            ret = num;
            k = (*aj)[i];
        }
    }

    ++ret;

    mark[v] = true;
    count[v] = ret;
    path[v] = k;

    return ret;
}

// 求解全局最短路径
void search_max_path(Graph<int, int> &g, Array<int> &count, Array<int> &path, Array<bool> &mark)
{
    for (int i=0; i<g.vCount(); ++i)
    {
        if (!mark[i])
        {
            search_max_path(g, i, count, path, mark);
        }
    }
}

最长不下降序列求解流程

image.png

void solution(int *a, int len)
{
    DynamicArray<int> count(len);
    DynamicArray<int> path(len);
    DynamicArray<bool> mark(len);
    SharedPointer<Graph<int, int>> g;
    
    g = create_graph(a, len);
    
    init_array(count, path, mark);
    
    search_max_path(*g, count, path, mark);
    
    print_max_path(*g, count, path);
}

编程实验:最长不下降序列

文件:main.cpp

#include <iostream>
#include "ListGraph.h"

using namespace std;
using namespace DTLib;

SharedPointer<Graph<int, int>> create_graph(int *a, int len)
{
    ListGraph<int, int> *ret = new ListGraph<int, int>(len);

    if (ret != nullptr)
    {
        for (int i=0; i<len; ++i)
        {
            ret->setVertex(i, a[i]);
        }

        for (int i=0; i<len; ++i)
        {
            for (int j=i+1; j<len; ++j)  // j = i + 1; ==> 保证相对位置不变 !!
            {
                if (a[i] <= a[j])        // 保证有序不下降
                {
                    ret->setEdge(i, j, 1);
                }
            }
        }
    }
    else
    {
        THROW_EXCEPTION(NoEnoughMemoryException, "No memory to create graph ...");
    }

    return ret;
}

void init_array(Array<int> &count, Array<int> &path, Array<bool> &mark)
{
    for (int i=0; i<count.length(); ++i)
    {
        count[i] = 0;
    }

    for (int i=0; i<path.length(); ++i)
    {
        path[i] = -1;
    }

    for (int i=0; i<mark.length(); ++i)
    {
        mark[i] = false;
    }
}

// 求解局部最短路径
int search_max_path(Graph<int, int> &g, int v, Array<int> &count, Array<int> &path, Array<bool> &mark)
{
    int ret = 0;
    int k = -1;

    SharedPointer<Array<int>> aj = g.getAdjacent(v);

    for (int i=0; i<aj->length(); ++i)
    {
        int num = 0;

        if (!mark[(*aj)[i]])
        {
            num = search_max_path(g, (*aj)[i], count, path, mark);
        }
        else
        {
            num = count[(*aj)[i]];
        }

        if (ret < num)
        {
            ret = num;
            k = (*aj)[i];
        }
    }

    ++ret;

    mark[v] = true;
    count[v] = ret;
    path[v] = k;

    return ret;
}

// 求解全局最短路径
void search_max_path(Graph<int, int> &g, Array<int> &count, Array<int> &path, Array<bool> &mark)
{
    for (int i=0; i<g.vCount(); ++i)
    {
        if (!mark[i])
        {
            search_max_path(g, i, count, path, mark);
        }
    }
}

void print_max_path(Graph<int, int> &g, Array<int> &count, Array<int> &path)
{
    int max = 0;

    for (int i=0; i<count.length(); ++i)
    {
        if (max < count[i])
        {
            max = count[i];
        }
    }

    cout << "Len :" << max << endl;

    for (int i=0; i<count.length(); ++i)
    {
        if (max == count[i])
        {
            cout << "Element : " << g.getVertex(i) << " ";

            for (int j=path[i]; j!=-1; j=path[j])  // j != -1; ==> 求最长路径,总会存在最后一个顶点无后邻接顶点以成为结束条件
            {
                cout << g.getVertex(j) << " ";
            }

            cout << endl;
        }
    }
}


void solution(int *a, int len)
{
    DynamicArray<int> count(len);
    DynamicArray<int> path(len);
    DynamicArray<bool> mark(len);
    SharedPointer<Graph<int, int>> g;

    g = create_graph(a, len);

    init_array(count, path, mark);

    search_max_path(*g, count, path, mark);

    print_max_path(*g, count, path);
}

int main()
{
    int a[] = {3,18,7,14,10,12,23,41,16,24};

    solution(a, sizeof (a)/sizeof(*a));

    return 0;
}

输出:

Len :6
Element : 3 7 10 12 16 24

最长不下降序列优化

描述

原数列:[1,3,5,4]
最长不下降序列:[1,3,5] [1,3,4]

int main()
{
    int a[] = {1, 3, 5, 4};

    solution(a, sizeof (a)/sizeof(*a));

    return 0;
}

输出:

Len :3
Element : 1 3 4

问题: [1,3,5] 未输出


问题分析

path 为单维数组,无法保存更多路径顶点信息

问题.jpg

解决方案

path 数组元素类型修改为: 顶点编号链表

解决.jpg

编程实验:最长不下降序列优化

文件:main.cpp

#include <iostream>
#include "ListGraph.h"
#include "LinkList.h"

using namespace std;
using namespace DTLib;

SharedPointer<Graph<int, int>> create_graph(int *a, int len)
{
    ListGraph<int, int> *ret = new ListGraph<int, int>(len);

    if (ret != nullptr)
    {
        for (int i=0; i<len; ++i)
        {
            ret->setVertex(i, a[i]);
        }

        for (int i=0; i<len; ++i)
        {
            for (int j=i+1; j<len; ++j)  // j = i + 1; ==> 保证相对位置不变 !!
            {
                if (a[i] <= a[j])        // 保证有序不下降
                {
                    ret->setEdge(i, j, 1);
                }
            }
        }
    }
    else
    {
        THROW_EXCEPTION(NoEnoughMemoryException, "No memory to create graph ...");
    }

    return ret;
}

void init_array(Array<int> &count, Array<LinkList<int>*> &path, Array<bool> &mark)
{
    for (int i=0; i<count.length(); ++i)
    {
        count[i] = 0;
    }

    for (int i=0; i<path.length(); ++i)
    {
        path[i] = new LinkList<int>();

        if (path[i] == nullptr)
        {
            THROW_EXCEPTION(InvalidOpertionExcetion, "No memory to create LinkList obj ...");
        }
    }

    for (int i=0; i<mark.length(); ++i)
    {
        mark[i] = false;
    }
}

// 求解局部最短路径
int search_max_path(Graph<int, int> &g, int v, Array<int> &count, Array<LinkList<int>*> &path, Array<bool> &mark)
{
    int ret = 0;

    SharedPointer<Array<int>> aj = g.getAdjacent(v);

    for (int i=0; i<aj->length(); ++i)
    {
        int num = 0;

        if (!mark[(*aj)[i]])
        {
            num = search_max_path(g, (*aj)[i], count, path, mark);
        }
        else
        {
            num = count[(*aj)[i]];
        }

        if (ret < num)
        {
            ret = num;
        }
    }

    for (int i=0; i<aj->length(); ++i)
    {
        if (ret == count[(*aj)[i]])
        {
            path[v]->insert((*aj)[i]);
        }
    }

    ++ret;

    mark[v] = true;
    count[v] = ret;

    return ret;
}

// 求解全局最短路径
void search_max_path(Graph<int, int> &g, Array<int> &count, Array<LinkList<int>*> &path, Array<bool> &mark)
{
    for (int i=0; i<g.vCount(); ++i)
    {
        if (!mark[i])
        {
            search_max_path(g, i, count, path, mark);
        }
    }
}

void print_path(Graph<int, int> &g, int v, Array<int> &count, Array<LinkList<int>*> &path, LinkList<int> &cp)
{
    cp.insert(v);

    if (path[v]->length() > 0)
    {
        for (path[v]->move(0); !path[v]->end(); path[v]->next())
        {
            print_path(g, path[v]->current(), count, path, cp);
        }
    }
    else
    {
        cout << "Element : ";
        for (cp.move(0); !cp.end(); cp.next())
        {
            cout << g.getVertex(cp.current()) << " ";
        }

        cout << endl;
    }

    cp.remove(cp.length()-1);
}

void print_max_path(Graph<int, int> &g, Array<int> &count, Array<LinkList<int>*> &path)
{
    int max = 0;
    LinkList<int> cp;

    for (int i=0; i<count.length(); ++i)
    {
        if (max < count[i])
        {
            max = count[i];
        }
    }

    cout << "Len :" << max << endl;

    for (int i=0; i<count.length(); ++i)
    {
        if (max == count[i])
        {
            print_path(g, i, count, path, cp);
        }
    }
}

void solution(int *a, int len)
{
    DynamicArray<int> count(len);
    DynamicArray<LinkList<int>*> path(len);
    DynamicArray<bool> mark(len);
    SharedPointer<Graph<int, int>> g;

    g = create_graph(a, len);

    init_array(count, path, mark);

    search_max_path(*g, count, path, mark);

    print_max_path(*g, count, path);
}

int main()
{
    int a[] = {1, 3, 5, 4};

    solution(a, sizeof (a)/sizeof(*a));

    return 0;
}

输出:

Len :3
Element : 1 3 4
Element : 1 3 5

以上内容整理于狄泰软件学院系列课程,请大家保护原创!


TianSong
737 声望140 粉丝

阿里山神木的种子在3000年前已经埋下,今天不过是看到当年注定的结果,为了未来的自己,今天就埋下一颗好种子吧