1.生产者api
引入依赖
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>0.11.0.0</version> //版本为0.11.0.0
</dependency>
生产者的配置项都在ProducerConfig类中说明,每一项配置都有对应的doc说明。
生产者使用api 带回调函数demo,还有阻塞方式运行,返回Future对象,通过future对象get()到返回的值。
public class CustomProducer {
public static void main(String[] args) throws ExecutionException, InterruptedException {
Properties props = new Properties();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.152.3:9092,192.168.152.2:9092,192.168.152.1:9092");//
props.put(ProducerConfig.ACKS_CONFIG, "all"); //leader 确认机制 0 1 all
props.put(ProducerConfig.RETRIES_CONFIG, 1);//重试次数
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);//生产者批发送大小
props.put(ProducerConfig.LINGER_MS_CONFIG, 1);//生产者达不到批发送大小,最短等待时间
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);//RecordAccumulator 缓冲区大小
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer"); //key的序列化器
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer"); //value的序列化器
Producer<String, String> producer = new KafkaProducer<>(props);
//ProducerConfig对象传参到KafkaProducer构造函数,生成producer对象
for (int i = 0; i < 10; i++) {
//producer.send(),消息封装成ProducerRecord对象
//带回调发送消息,如果发送失败会自动重试
producer.send(new ProducerRecord<String, String>("minerprofit", Integer.toString(i), Integer.toString(i)), (RecordMetadata metadata,Exception exception) -> {
if (exception == null) {
System.out.println("success->" +
metadata.offset());
} else {
exception.printStackTrace();
}
}
});
}
producer.close(); //关闭消费者
}
2.消费者api
自动提交offset方式
public class CustomConsumer {
public static void main(String[] args) {
Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.152.3:9092,192.168.152.2:9092,192.168.152.1:9092");//
props.put(ConsumerConfig.GROUP_ID_CONFIG, "miner"); //消费者组
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true"); //开启自动提交
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000"); //自动提交最短时间
//key反序列化类
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
//value反序列化类
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList("profit")); //消费者组订阅的topic
while (true) {
ConsumerRecords<String, String> records = consumer.poll(100); //拉取数据
for (ConsumerRecord<String, String> record : records){
System.out.printf("offset = %d, key = %s, value= %s%n", record.offset(), record.key(), record.value());
}
}
}
}
手动提交offset方式:
手动提交有两种提交方式一种是同步提交,一种是异步提交。
public class CustomConsumer {
public static void main(String[] args) {
Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.152.3:9092,192.168.152.2:9092,192.168.152.1:9092");//
props.put(ConsumerConfig.GROUP_ID_CONFIG, "miner"); //消费者组
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false"); //开启自动提交
//props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000"); //自动提交最短时间
//key反序列化类
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
//value反序列化类
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList("profit")); //消费者组订阅的topic
while (true) {
ConsumerRecords<String, String> records = consumer.poll(100); //拉取数据
for (ConsumerRecord<String, String> record : records){
System.out.printf("offset = %d, key = %s, value= %s%n", record.offset(), record.key(), record.value());
}
consumer.commitSync(); //同步提交offset,会阻塞当前线程的运行
}
}
}
异步提交
consumer.commitAsync(new OffsetCommitCallback() {
@Override
public void onComplete(Map<TopicPartition,OffsetAndMetadata> offsets, Exception exception) {
if (exception != null) {
System.err.println("Commit failed:" +
offsets);
}
}
});
3.如何保证消息中间件幂等性
什么是幂等性:
生产者生产的消息能够发送到消息中间件中,消息中间件不会重复接受也不会少接收;消费者进行消费消息,不会重复消费,也不会少消费。
kafka结合具体业务如何保证幂等性:
kafka 生产者确认acks使用all级别,生产者发送到kafka的消息只可能重复不可能丢失,保证at least once;消费者使用异步提交offset,在业务中将得到的消息首先入数据库,如果库中已经存在了相同的消息,那么如果得到了新的相同的消息,那么就可以剔除重复的消息。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。