Sql方式实现连续N天登陆
构造测试数据
create table dwd.login_log as
select 1 as user_id, "2020-01-01" as login_date
union all
select 1 as user_id, "2020-01-02" as login_date
union all
select 1 as user_id, "2020-01-07" as login_date
union all
select 1 as user_id, "2020-01-08" as login_date
union all
select 1 as user_id, "2020-01-09" as login_date
union all
select 1 as user_id, "2020-01-10" as login_date
union all
select 2 as user_id, "2020-01-01" as login_date
union all
select 2 as user_id, "2020-01-02" as login_date
union all
select 2 as user_id, "2020-01-04" as login_date
如果日期格式不规范,可以将其转换为标准格式
create table dwd.login_log as
select user_id,to_date(from_unixtime(UNIX_TIMESTAMP(login_date,'yyyy-MM-dd'))) as login_date
from tmp.login_log; -- tmp库为原始数据
1.使用lag&lead+datediff窗口函数
- 比如求连续三天登陆,可以将当天上一条数据和下一条数据都拿到,然后保证now-lag=lead-now=1即可;
- 如果是连续多天,可以取更多的数据,或者将数据全部更改为lag或者lead函数;
datediff(date1, date2) - Returns the number of days between date1 and date2
select user_id
from
(select user_id
from
(select user_id,
lag(login_date,1) over(partition by user_id order by login_date) as lag_login_date,
login_date,
lead(login_date,1) over(partition by user_id order by login_date) as lead_login_date
from dwd.login_log)t1
where datediff(login_date,lag_login_date)=1 and datediff(lead_login_date,login_date)=1)t2
group by user_id;
2.使用date_add函数
- 通用的,先对user_id分区排序,然后将日期减去rank天,查看有多少条数据即可;
- 优点在于可以统计具体连续登陆多少天,以及连续登陆的实际情况;
date_add(start_date, num_days) - Returns the date that is num_days after start_date
select user_id,con_login_date,count(*) nums
from
(select user_id,login_date,rk,date_add(login_date,1 - rk) as con_login_date
from
(select user_id,login_date,rank() over(partition by user_id order by login_date) rk
from dwd.login_log)t1
)t2
group by user_id,con_login_date
having count(*) >= 3;
用户id |
登陆时间 |
按照登陆时间组内排序 |
1 |
2020-01-01 |
1 |
1 |
2020-01-02 |
2 |
1 |
2020-01-07 |
3 |
1 |
2020-01-08 |
4 |
1 |
2020-01-09 |
5 |
1 |
2020-01-10 |
6 |
2 |
2020-01-01 |
1 |
2 |
2020-01-02 |
2 |
2 |
2020-01-04 |
3 |
- t2表的查询结果,归一化的日期(也就是上述取前
1 - rk
)可以自己定义
用户id |
登陆时间 |
连续登陆的日期归一化的日期 |
1 |
2020-01-01 |
2020-01-01 |
1 |
2020-01-02 |
2020-01-01 |
1 |
2020-01-07 |
2020-01-05 |
1 |
2020-01-08 |
2020-01-05 |
1 |
2020-01-09 |
2020-01-05 |
1 |
2020-01-10 |
2020-01-05 |
2 |
2020-01-1 |
2020-01-01 |
2 |
2020-01-2 |
2020-01-01 |
2 |
2020-01-4 |
2020-01-02 |
- group by后的查询结果,第三列可以按照session内统计来理解,就是这批连续登陆内连续登陆的天数
用户id |
连续登陆的日期归一化的日期 |
用户此次连续登陆天数 |
1 |
2020-01-01 |
2 |
1 |
2020-01-05 |
4 |
2 |
2020-01-01 |
2 |
2 |
2020-01-02 |
1 |
代码实现思路
- 使用代码来实现连续N天登陆,核心逻辑就是
按照日期排序,新日期如果和旧日期相差1天就保留在HashMap里面,Size超过N即可输出user_id,否则清空
package cn.lang.spark_core
import java.text.{ParseException, SimpleDateFormat}
import java.util.Calendar
import org.apache.spark.sql.SparkSession
object ContinuousLoginDays {
def main(args: Array[String]): Unit = {
// env
val spark: SparkSession = SparkSession
.builder()
.appName("ContinuousLoginDays")
.master("local[*]")
.getOrCreate()
val sc = spark.sparkContext
// source,可以是load hive(开启hive支持)或者parquet列式文件(定义好schema)
val source = sc.textFile("/user/hive/warehouse/dwd/login_log")
case class Login(uid: Int, loginTime: String) // 可以kryo序列化
/** get date last `abs(n)` days defore or after biz_date *
* example biz_date = 20200101 ,last_n = 1,return 20191231 */
def getLastNDate(biz_date: String,
date_format: String = "yyyyMMdd",
last_n: Int = 1): String = {
val calendar: Calendar = Calendar.getInstance()
val sdf = new SimpleDateFormat(date_format)
try
calendar.setTime(sdf.parse(biz_date))
catch {
case e: ParseException => // omit
}
calendar.set(Calendar.DATE, calendar.get(Calendar.DATE) - last_n)
sdf.format(calendar.getTime)
}
// transform
val result = source
.map(_.split("\t"))
.map(iterm => Login(iterm(0).toInt, iterm(1)))
.groupBy(_.uid) // RDD[(Int, Iterable[Login])]
.map(iterm => {
// 用于给此uid标记是否符合要求
var CONTINUOUS_LOGIN_N = false
val logins = iterm._2
.toSeq
.sortWith((v1, v2) => v1.loginTime.compareTo(v2.loginTime) > 0)
var lastLoginTime: String = ""
var loginDays: Int = 0
logins
.foreach(iterm => {
if (lastLoginTime == "") {
lastLoginTime = iterm.loginTime
loginDays = 1
} else if (getLastNDate(iterm.loginTime) == lastLoginTime) {
lastLoginTime = iterm.loginTime
loginDays = 2
} else {
lastLoginTime = iterm.loginTime
loginDays = 1
}
})
if (loginDays > 3) CONTINUOUS_LOGIN_N = true
/** 此处可以使用集合将连续登陆的情况保留,
* 也可以直接按照是否连续登陆N天进行标记
*/
(iterm._1, CONTINUOUS_LOGIN_N)
})
.filter(_._2)
.map(_._1)
// sink
result.foreach(println(_))
}
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。