scala
$ wget https://downloads.lightbend.com/scala/2.12.11/scala-2.12.11.tgz
$ tar -zxvf scala-2.12.11.tgz -C /usr/local
$ su hadoop
$ cd
$ vim ~/.bashrc
#scala
export SCALA_HOME=/usr/local/scala-2.12.11
export PATH=$PATH:$SCALA_HOME/bin
$ source ~/.bashrc
$ exit
spark
$ wget https://mirrors.tuna.tsinghua.edu.cn/apache/spark/spark-2.4.6/spark-2.4.6-bin-without-hadoop.tgz
$ tar -zxvf spark-2.4.6-bin-without-hadoop.tgz -C /data
$ mv /data/spark-2.4.6-bin-without-hadoop/ /data/spark
$ chown -R hadoop.hadoop /data/spark/
$ su hadoop
spark配置文件
$ cd /data/spark/conf
$ cp spark-env.sh.template spark-env.sh
$ cp spark-defaults.sh.template spark-defaults.sh
$ cp slaves.template slaves
spark-env.sh
$ vim spark-env.sh
export JAVA_HOME=/usr/local/jdk1.8.0_231
export SPARK_MASTER_PORT=7077
export SPARK_MASTER_WEBUI_PORT=18088
export SPARK_WORKER_WEBUI_PORT=18081
export SPARK_WORKER_CORES=2
export SPARK_WORKER_MEMORY=6000m
export LD_LIBRARY_PATH=/data/hadoop/lib/native
export SPARK_DIST_CLASSPATH=$(hadoop classpath)
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export SPARK_HOME=/data/spark
export SPARK_WORKER_DIR=/data/spark/work
export SPARK_PID_DIR=/tmp
export SPARK_JAR=/data/spark/jars/*.jar
export PATH=$SPARK_HOME/bin:$PATH
export SPARK_CLASSPATH=$SPARK_CLASSPATH:/data/spark/jars/mysql-connector-java-5.1.49-bin.jar
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=192.168.233.17:2181,192.168.233.238:2181,192.168.233.157:2181 -Dspark.deploy.zookeeper.dir=/spark"
export SPARK_HISTORY_OPTS="-Dspark.history.ui.port=18080 -Dspark.history.retainedApplications=30 -Dspark.history.fs.logDirectory=hdfs://hadoop-test-cluster/logs"
spark-defaults.conf
$ vim spark-defaults.conf
spark.master spark://192.168.233.65:7077,192.168.233.94:7077
spark.eventLog.enabled true
spark.eventLog.dir hdfs://hadoop-test-cluster/logs
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.driver.memory 1g
spark.executor.memory 2g
spark.executor.extraJavaOptions -XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"
spark.yarn.jars=hdfs://hadoop-test-cluster/home/hadoop/spark_jars/*
slaves
$ vim slaves
192.168.233.17
192.168.233.238
192.168.233.157
所有节点配置环境
$ vim ~/.bashrc
# spark
export SPARK_HOME=/data/spark
export PATH=$SPARK_HOME/bin:$PATH
$ source ~/.bashrc
$ hdfs dfs -mkdir /logs
$ hdfs dfs -mkdir -p /home/hadoop/spark_jars
$ hdfs dfs -put /data/spark/jars/* /home/hadoop/spark_jars/
同步所有spark节点配置文件
在主节点启动master
$ /data/spark/sbin/start-all.sh
在备节点master
/data/spark/sbin/start-master.sh
测试
$ spark-shell --master yarn --executor-memory 1000m --total-executor-cores 1
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Spark context Web UI available at http://hadoop-test-2:4040
Spark context available as 'sc' (master = yarn, app id = application_1592791653609_0004).
Spark session available as 'spark'.
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.4.6
/_/
Using Scala version 2.11.12 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_231)
Type in expressions to have them evaluated.
Type :help for more information.
scala>
访问WebUI
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。