causation理论的一点应用。证明分值不是偶然发生的
RCA的工具一般可以query and classify anomalies,相关性分析(causal probabilistic gaphical models)
- spurious correlations。当dimensionality比data points数量多
- 交互式查询,target metrics of interest(Y),正常和异常时间段,specificity metrics for control(可选Z),search space of metrics(可选X)=》TOP 20 root-cause insearchspace:scores(Xi)<-assoc(Y,Xi|Z)
原理
causal bayesian network。嗯,可以用带条件的两个变量关系去构造复杂的关系。
- ExplainIt!– A Declarative Root-cause Analysis Engine for Time Series Data
- Why? The above approach offers three main benefits.
- First, the formalism is a non-parametric and declarative way of expressing dependencies between variables and defers any specific approach to the runtime system.
- Second, the unified approach naturally lends itself to multivariate dependencies of more complex relationships beyond simple correlations between pairwise univariate metrics.
- Third, the approach also gives us a way to reason about dependencies that might be easier to detect only when holding some variables con- stant;
1.feature family (可以按照host聚合,类似group by。比如某个feature family是75th延时,当前clusterjobs数量)
2.ranking 假设(X,Y,Z)=》给出Xi的排序
单变量Z空score:X中每个Xi,Y中每个Yj,Pearson product-moment coorelation 的均值和最值 coorMean=meani,j|pi,j|。
多变量Z空,线性回归(random projection降维)+loss function 计算R方
Z不空:回归Y~Z,X~Z.得到RY;X.,RX;Z. 回归两个R计算R2(Y;X|Z)
当X中predictors很多,observations很少时。用Ridge penalty达到了和adjusted R2一样的效果。见后文。
实验是否能够补全图
评估
打分方法的评估:
ranking accuracy:cause是第r个,1/r
success rate: cause in topk 得1,否则0
理论
PC/SGS算法 use pairwise conditional independence=>full causal structture.also considering a joint set of variables.
rarely requires the full causal structuew
给出了过拟合 用radj。当一个score至少大于s是意外正常发生的概率和n,p的关系。当s小于这个值时不可信的。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。