上次在群里讨论了aof设置成为appendfsync always到底会不会丢失数据,那我们就从源码层面去看看redis的实现,看看到底是不是绝对不会丢失数据(redis-4.0.10)。
//filename ae.c
typedef struct aeEventLoop {
int maxfd; /* highest file descriptor currently registered */
int setsize; /* max number of file descriptors tracked */
long long timeEventNextId;
time_t lastTime; /* Used to detect system clock skew */
aeFileEvent *events; /* Registered events */
aeFiredEvent *fired; /* Fired events */
aeTimeEvent *timeEventHead;
int stop;
void *apidata; /* This is used for polling API specific data */
aeBeforeSleepProc *beforesleep;
aeBeforeSleepProc *aftersleep;
} aeEventLoop;
typedef void aeBeforeSleepProc(struct aeEventLoop *eventLoop);
//ae网络事件主程序,一个event loop
void aeMain(aeEventLoop *eventLoop) {
eventLoop->stop = 0;
//如果eventLoop中的stop标志位不为1,就循环处理
while (!eventLoop->stop) {
if (eventLoop->beforesleep != NULL)
//处理事件时候的前置操作,处理回调函数
//那么这个回调函数是在什么时候设置的呢?
//后面会有
eventLoop->beforesleep(eventLoop);
aeProcessEvents(eventLoop, AE_ALL_EVENTS|AE_CALL_AFTER_SLEEP);
}
}
//server.c
void beforeSleep(struct aeEventLoop *eventLoop) {
UNUSED(eventLoop);
if (server.cluster_enabled) clusterBeforeSleep();
if (server.active_expire_enabled && server.masterhost == NULL)
activeExpireCycle(ACTIVE_EXPIRE_CYCLE_FAST);
if (server.get_ack_from_slaves) {
robj *argv[3];
argv[0] = createStringObject("REPLCONF",8);
argv[1] = createStringObject("GETACK",6);
argv[2] = createStringObject("*",1); /* Not used argument. */
replicationFeedSlaves(server.slaves, server.slaveseldb, argv, 3);
decrRefCount(argv[0]);
decrRefCount(argv[1]);
decrRefCount(argv[2]);
server.get_ack_from_slaves = 0;
}
if (listLength(server.clients_waiting_acks))
processClientsWaitingReplicas();
moduleHandleBlockedClients();
/* Try to process pending commands for clients that were just unblocked. */
if (listLength(server.unblocked_clients))
processUnblockedClients();
//前置操作就会有调用flushAppendOnlyFile函数
flushAppendOnlyFile(0);
/* Handle writes with pending output buffers. */
handleClientsWithPendingWrites();
/* Before we are going to sleep, let the threads access the dataset by
* releasing the GIL. Redis main thread will not touch anything at this
* time. */
if (moduleCount()) moduleReleaseGIL();
}
int main(){
.....
//设置了事件的前置操作函数
eSetBeforeSleepProc(server.el,beforeSleep);
aeSetAfterSleepProc(server.el,afterSleep);
}
//filename aof.c
//进行aof的append
void flushAppendOnlyFile(int force) {
ssize_t nwritten;
int sync_in_progress = 0;
mstime_t latency;
//aof_buf区间为0的话,不进行增加操作
if (sdslen(server.aof_buf) == 0) return;
//start 以下是aof配置为 EVERYSEC的逻辑我们可以暂时不用看
if (server.aof_fsync == AOF_FSYNC_EVERYSEC)
sync_in_progress = bioPendingJobsOfType(BIO_AOF_FSYNC) != 0;
if (server.aof_fsync == AOF_FSYNC_EVERYSEC && !force) {
/* With this append fsync policy we do background fsyncing.
* If the fsync is still in progress we can try to delay
* the write for a couple of seconds. */
if (sync_in_progress) {
if (server.aof_flush_postponed_start == 0) {
/* No previous write postponing, remember that we are
* postponing the flush and return. */
server.aof_flush_postponed_start = server.unixtime;
return;
} else if (server.unixtime - server.aof_flush_postponed_start < 2) {
/* We were already waiting for fsync to finish, but for less
* than two seconds this is still ok. Postpone again. */
return;
}
/* Otherwise fall trough, and go write since we can't wait
* over two seconds. */
server.aof_delayed_fsync++;
serverLog(LL_NOTICE,"Asynchronous AOF fsync is taking too long (disk is busy?). Writing the AOF buffer without waiting for fsync to complete, this may slow down Redis.");
}
}
//end
latencyStartMonitor(latency);
//将aof_buf中的数据写入到aof中
nwritten = aofWrite(server.aof_fd,server.aof_buf,sdslen(server.aof_buf));
latencyEndMonitor(latency);
if (sync_in_progress) {
latencyAddSampleIfNeeded("aof-write-pending-fsync",latency);
} else if (server.aof_child_pid != -1 || server.rdb_child_pid != -1) {
latencyAddSampleIfNeeded("aof-write-active-child",latency);
} else {
latencyAddSampleIfNeeded("aof-write-alone",latency);
}
latencyAddSampleIfNeeded("aof-write",latency);
//上面latency开头的函数都是对一些延时操作进行统计
//类似与性能统计吧,主要是会对一些IO操作或者fork操作进行统计
//有兴趣的同学可以仔细研究用处哈,这里不做过多介绍
server.aof_flush_postponed_start = 0;
//一些错位的处理
if (nwritten != (ssize_t)sdslen(server.aof_buf)) {
static time_t last_write_error_log = 0;
int can_log = 0;
/* Limit logging rate to 1 line per AOF_WRITE_LOG_ERROR_RATE seconds. */
if ((server.unixtime - last_write_error_log) > AOF_WRITE_LOG_ERROR_RATE) {
can_log = 1;
last_write_error_log = server.unixtime;
}
/* Log the AOF write error and record the error code. */
if (nwritten == -1) {
if (can_log) {
serverLog(LL_WARNING,"Error writing to the AOF file: %s",
strerror(errno));
server.aof_last_write_errno = errno;
}
} else {
if (can_log) {
serverLog(LL_WARNING,"Short write while writing to "
"the AOF file: (nwritten=%lld, "
"expected=%lld)",
(long long)nwritten,
(long long)sdslen(server.aof_buf));
}
if (ftruncate(server.aof_fd, server.aof_current_size) == -1) {
if (can_log) {
serverLog(LL_WARNING, "Could not remove short write "
"from the append-only file. Redis may refuse "
"to load the AOF the next time it starts. "
"ftruncate: %s", strerror(errno));
}
} else {
/* If the ftruncate() succeeded we can set nwritten to
* -1 since there is no longer partial data into the AOF. */
nwritten = -1;
}
server.aof_last_write_errno = ENOSPC;
}
/* Handle the AOF write error. */
if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
/* We can't recover when the fsync policy is ALWAYS since the
* reply for the client is already in the output buffers, and we
* have the contract with the user that on acknowledged write data
* is synced on disk. */
serverLog(LL_WARNING,"Can't recover from AOF write error when the AOF fsync policy is 'always'. Exiting...");
exit(1);
} else {
/* Recover from failed write leaving data into the buffer. However
* set an error to stop accepting writes as long as the error
* condition is not cleared. */
server.aof_last_write_status = C_ERR;
/* Trim the sds buffer if there was a partial write, and there
* was no way to undo it with ftruncate(2). */
if (nwritten > 0) {
server.aof_current_size += nwritten;
sdsrange(server.aof_buf,nwritten,-1);
}
return; /* We'll try again on the next call... */
}
} else {
/* Successful write(2). If AOF was in error state, restore the
* OK state and log the event. */
if (server.aof_last_write_status == C_ERR) {
serverLog(LL_WARNING,
"AOF write error looks solved, Redis can write again.");
server.aof_last_write_status = C_OK;
}
}
server.aof_current_size += nwritten;
//清空aofbuf,如果aofbuf较小时,复用之,大了的话free掉,重新申请
//这样对性能有好处吗??我暂时没有想明白为什么
if ((sdslen(server.aof_buf)+sdsavail(server.aof_buf)) < 4000) {
sdsclear(server.aof_buf);
} else {
sdsfree(server.aof_buf);
server.aof_buf = sdsempty();
}
//aof正在进行rewrite或者说有rdb的快照同步的话不进行fsync操作
if (server.aof_no_fsync_on_rewrite &&
(server.aof_child_pid != -1 || server.rdb_child_pid != -1))
return;
//进行fsync操作,上面只是写入缓冲区了,并没有真正意义上的flush到disk
if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
/* aof_fsync is defined as fdatasync() for Linux in order to avoid
* flushing metadata. */
latencyStartMonitor(latency);
aof_fsync(server.aof_fd); /* Let's try to get this data on the disk */
latencyEndMonitor(latency);
latencyAddSampleIfNeeded("aof-fsync-always",latency);
server.aof_last_fsync = server.unixtime;
} else if ((server.aof_fsync == AOF_FSYNC_EVERYSEC &&
server.unixtime > server.aof_last_fsync)) {
if (!sync_in_progress) aof_background_fsync(server.aof_fd);
server.aof_last_fsync = server.unixtime;
}
}
以上我们进行了初步的一些源码分析,细心的朋友可能会发现我们是在什么时候写入到aof_buf内存的呢,不要紧,我们继续上源码。
//filename server.c
//执行客户端命令的过程
void call(client *c, int flags) {
long long dirty, start, duration;
int client_old_flags = c->flags;
if (listLength(server.monitors) &&
!server.loading &&
!(c->cmd->flags & (CMD_SKIP_MONITOR|CMD_ADMIN)))
{
replicationFeedMonitors(c,server.monitors,c->db->id,c->argv,c->argc);
}
c->flags &= ~(CLIENT_FORCE_AOF|CLIENT_FORCE_REPL|CLIENT_PREVENT_PROP);
redisOpArray prev_also_propagate = server.also_propagate;
redisOpArrayInit(&server.also_propagate);
/* Call the command. */
dirty = server.dirty;
start = ustime();
c->cmd->proc(c);
duration = ustime()-start;
dirty = server.dirty-dirty;
if (dirty < 0) dirty = 0;
if (server.loading && c->flags & CLIENT_LUA)
flags &= ~(CMD_CALL_SLOWLOG | CMD_CALL_STATS);
if (c->flags & CLIENT_LUA && server.lua_caller) {
if (c->flags & CLIENT_FORCE_REPL)
server.lua_caller->flags |= CLIENT_FORCE_REPL;
if (c->flags & CLIENT_FORCE_AOF)
server.lua_caller->flags |= CLIENT_FORCE_AOF;
}
if (flags & CMD_CALL_SLOWLOG && c->cmd->proc != execCommand) {
char *latency_event = (c->cmd->flags & CMD_FAST) ?
"fast-command" : "command";
latencyAddSampleIfNeeded(latency_event,duration/1000);
slowlogPushEntryIfNeeded(c,c->argv,c->argc,duration);
}
if (flags & CMD_CALL_STATS) {
c->lastcmd->microseconds += duration;
c->lastcmd->calls++;
}
if (flags & CMD_CALL_PROPAGATE &&
(c->flags & CLIENT_PREVENT_PROP) != CLIENT_PREVENT_PROP)
{
int propagate_flags = PROPAGATE_NONE;
/* Check if the command operated changes in the data set. If so
* set for replication / AOF propagation. */
if (dirty) propagate_flags |= (PROPAGATE_AOF|PROPAGATE_REPL);
/* If the client forced AOF / replication of the command, set
* the flags regardless of the command effects on the data set. */
if (c->flags & CLIENT_FORCE_REPL) propagate_flags |= PROPAGATE_REPL;
if (c->flags & CLIENT_FORCE_AOF) propagate_flags |= PROPAGATE_AOF;
/* However prevent AOF / replication propagation if the command
* implementatino called preventCommandPropagation() or similar,
* or if we don't have the call() flags to do so. */
if (c->flags & CLIENT_PREVENT_REPL_PROP ||
!(flags & CMD_CALL_PROPAGATE_REPL))
propagate_flags &= ~PROPAGATE_REPL;
if (c->flags & CLIENT_PREVENT_AOF_PROP ||
!(flags & CMD_CALL_PROPAGATE_AOF))
propagate_flags &= ~PROPAGATE_AOF;
//这里是重点哦,如果设置了aof就会调用propagate
if (propagate_flags != PROPAGATE_NONE && !(c->cmd->flags & CMD_MODULE))
propagate(c->cmd,c->db->id,c->argv,c->argc,propagate_flags);
}
/* Restore the old replication flags, since call() can be executed
* recursively. */
c->flags &= ~(CLIENT_FORCE_AOF|CLIENT_FORCE_REPL|CLIENT_PREVENT_PROP);
c->flags |= client_old_flags &
(CLIENT_FORCE_AOF|CLIENT_FORCE_REPL|CLIENT_PREVENT_PROP);
/* Handle the alsoPropagate() API to handle commands that want to propagate
* multiple separated commands. Note that alsoPropagate() is not affected
* by CLIENT_PREVENT_PROP flag. */
if (server.also_propagate.numops) {
int j;
redisOp *rop;
if (flags & CMD_CALL_PROPAGATE) {
for (j = 0; j < server.also_propagate.numops; j++) {
rop = &server.also_propagate.ops[j];
int target = rop->target;
/* Whatever the command wish is, we honor the call() flags. */
if (!(flags&CMD_CALL_PROPAGATE_AOF)) target &= ~PROPAGATE_AOF;
if (!(flags&CMD_CALL_PROPAGATE_REPL)) target &= ~PROPAGATE_REPL;
if (target)
propagate(rop->cmd,rop->dbid,rop->argv,rop->argc,target);
}
}
redisOpArrayFree(&server.also_propagate);
}
server.also_propagate = prev_also_propagate;
server.stat_numcommands++;
}
void propagate(struct redisCommand *cmd, int dbid, robj **argv, int argc,
int flags)
{
//aof开启调用feedAppendOnlyFile函数
if (server.aof_state != AOF_OFF && flags & PROPAGATE_AOF)
//重点
feedAppendOnlyFile(cmd,dbid,argv,argc);
if (flags & PROPAGATE_REPL)
replicationFeedSlaves(server.slaves,dbid,argv,argc);
}
void feedAppendOnlyFile(struct redisCommand *cmd, int dictid, robj **argv, int argc) {
sds buf = sdsempty();
robj *tmpargv[3];
/* The DB this command was targeting is not the same as the last command
* we appended. To issue a SELECT command is needed. */
if (dictid != server.aof_selected_db) {
char seldb[64];
snprintf(seldb,sizeof(seldb),"%d",dictid);
buf = sdscatprintf(buf,"*2\r\n$6\r\nSELECT\r\n$%lu\r\n%s\r\n",
(unsigned long)strlen(seldb),seldb);
server.aof_selected_db = dictid;
}
if (cmd->proc == expireCommand || cmd->proc == pexpireCommand ||
cmd->proc == expireatCommand) {
buf = catAppendOnlyExpireAtCommand(buf,cmd,argv[1],argv[2]);
} else if (cmd->proc == setexCommand || cmd->proc == psetexCommand) {
/* Translate SETEX/PSETEX to SET and PEXPIREAT */
tmpargv[0] = createStringObject("SET",3);
tmpargv[1] = argv[1];
tmpargv[2] = argv[3];
buf = catAppendOnlyGenericCommand(buf,3,tmpargv);
decrRefCount(tmpargv[0]);
buf = catAppendOnlyExpireAtCommand(buf,cmd,argv[1],argv[2]);
} else if (cmd->proc == setCommand && argc > 3) {
int i;
robj *exarg = NULL, *pxarg = NULL;
/* Translate SET [EX seconds][PX milliseconds] to SET and PEXPIREAT */
buf = catAppendOnlyGenericCommand(buf,3,argv);
for (i = 3; i < argc; i ++) {
if (!strcasecmp(argv[i]->ptr, "ex")) exarg = argv[i+1];
if (!strcasecmp(argv[i]->ptr, "px")) pxarg = argv[i+1];
}
serverAssert(!(exarg && pxarg));
if (exarg)
buf = catAppendOnlyExpireAtCommand(buf,server.expireCommand,argv[1],
exarg);
if (pxarg)
buf = catAppendOnlyExpireAtCommand(buf,server.pexpireCommand,argv[1],
pxarg);
} else {
buf = catAppendOnlyGenericCommand(buf,argc,argv);
}
//aof打开写入aof当中
if (server.aof_state == AOF_ON)
//sdscatlen本质就是memcpy,具体可见filename sds.c
server.aof_buf = sdscatlen(server.aof_buf,buf,sdslen(buf));
if (server.aof_child_pid != -1)
aofRewriteBufferAppend((unsigned char*)buf,sdslen(buf));
sdsfree(buf);
}
那么从上面的分析得出,其实我们每次执行客户端命令的时候操作并没有写到aof文件中,只是写到了aof_buf内存当中,当进行下一个事件循环的时候执行beforeSleep之时,才会去fsync到disk中,从redis的这种策略上我们也可以看出,redis和mysql在数据持久化之间的区别,redis的数据持久化仅仅就是一个附带功能,并不是其主要功能,但是mysql就不一样,mysql的在数据坚持久化方面就是刚需,最终目的就是让数据成功落盘,不会有任何的丢失和数据一致性问题,因此mysql(innodb存储引擎)在做事务提交的时候会有两阶段提交、日志立即刷盘(当然这和sync_binlog和innodb_flush_log_at_trx_commit配置有关)来确保数据的成功提交,不会丢失。下次如果面试被问到持久化了,就可以这么和面试官愉快的吹水了,分析就到此结束啦。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。