前言

HiLens Studio公测也出来一阵子了,亮点很多,我前些天也申请了公测,通过后赶快尝试了一下,不得不说真的很不错啊,特别是支持云端编辑代码,调试,甚至可以直接运行程序,即使自己的HiLens不在身边,也可以得到程序运行结果,不仅仅是云端IDE这么简单,更是有云端硬件资源支撑,极大降低了开发者负担,开发者只需要一台可以联网的电脑就行了,可以快速验证,验证通过后,直接安装到自己的HiLens上就能应用了,真是太棒了。

我尝试了将以前做过的Demo通过HiLens Stuido开发,真的很不错,很简单就能完成,值得一提的是,HiLens  Studio支持模型转换,再也不需要通过ModelArts的模型转换与压缩功能转换模型了,直接在HiLens Studio中就能完成了,直接用在项目中就行,省去了模型传输的麻烦,可以说这次的HiLens Studio是集大成之作,在得到模型原型(TensorFlow的.pb模型或Caffe的模型)后,后续的模型转换、代码编写,调试,到最后的安装部署,都可以通过HiLens Studio来完成,特别是支持在线调试运行,没有HiLens都可以调试,这对于以前的嵌入式或边缘计算开发来说,是不敢想象的,这都是得益于华为云强大的硬件支撑和技术支持。

闲话少说,这次,我通过HiLens Studio完成基于YOLOv3_Resnet18的行人检测,这里为了简单,只对行人进行检测,如果你希望可以检测更多类别的目标,可以使用更多类别的数据集训练,相应的参照本文提供的utils.py做简单的代码修改即可,代码都会给的,也会加必要的注释哦,而且完整技能发布在了ModelArts的AI市场,欢迎大家体验,如果有问题,可以在下面回帖哦,对了,该技能基于最新的固件版本测试,在云端控制管理台显示为1.0.9版本,其他版本下未测试,注意版本哦。技能在AI市场的链接https://console.huaweicloud.com/modelarts/?region=cn-north-4#/aiMarket/aiMarketModelDetail/overview?modelId=9d906199-b467-4a7e-9521-bc6a3031cf7b&type=hilens

正文

重要前提:你已经申请了HiLens Studio公测,并通过。同时,华为云账户有一定余额或代金券,模型训练和OBS需要一定花费,比较少

整体流程创建数据集(公开数据集即可)---->模型训练---->在HiLens Studio中完成模型转换---->编辑代码---->在线调试---->安装部署。下面来逐一介绍一下

1. 创建数据集

这里使用的数据集较大,是基于VOC 2007数据集中Person类别基础,收集网络图片和各公开数据集整理而成,从OBS桶下载需要耗费大量Money,分享也不太方便。不过,没关系,可以使用官方提供的数据集,无需上传到OBS桶,直接从官方桶中拷贝即可,但缺点是该数据集有行人和车两类,且行人较少,主要是车辆,不太适合,大体数据分布如下:

不过你可以考虑改为对车检测,或干脆直接人车检测(需要自己简单修改代码),可自行选择哦,关于如何获取该数据集,以及如何创建数据集,并发布数据集相关介绍较多,不在此赘述,可以参考这篇博客中的正文部分的方法哦,里面介绍了过程,链接为:https://bbs.huaweicloud.com/blogs/175189

2. 模型训练

说明一下,这里使用的是ModelArts中基于Ascend 910训练的YOLOv3_Resnet18。链接为:https://console.huaweicloud.com/modelarts/?region=cn-north-4#/aiMarket/aiMarketModelDetail/overview?modelId=7087008a-7eec-4977-8b66-3a7703e9fd22&type=algo  ,同时,AI市场中有基GPU训练的YOLOv3_Resnet18和ModelArts预置算法中的YOLOv3_Resnet18,这两个应该也是可以的,只要最终得到.pb模型并能在HiLens Studio完成模型转换都应该没问题的哦,这两个算法链接分别为:https://console.huaweicloud.com/modelarts/?region=cn-north-4#/aiMarket/aiMarketModelDetail/overview?modelId=948196c8-3e7a-4729-850b-069101d6e95c&type=algo     和      https://support.huaweicloud.com/engineers-modelarts/modelarts_23_0158.html#modelarts_23_0158__section185515526717

注意AI市场的算法需要先订阅(免费的哦),同步后才能创建训练,类似于你购买了该算法,并同步算法到自己的账户,相关介绍在博客中正文第三部分 模型训练中可查看,不过该博客讲的是YOLOv3_Darknet53,不是这里使用YOLOv3_Resnet18,不过没什么影响,只是名字不同,操作是类似的,链接:https://bbs.huaweicloud.com/blogs/175189

最后,提醒一下,无论使用哪种算法,都要用HiLens Studio来转换模型,不要使用ModelArts中的模型转换与压缩来做,因为我用的是最新的1.0.9固件版本,目前尝试,仅HiLens Studio转换模型才能正常使用。

3. 模型转换

对了,打开HiLens Studio需要一定时间,请耐心等待哦。

这里可以将模型训练输出到OBS桶的模型直接导入到HiLens  Studio中,完成模型转换,非常方便,这真是极致的云端操作,将云服务发挥到了极致啊。当然,你也可以自己从本地电脑上传到HiLens Studio中哦。来看看怎么导入吧,很简单,选择Import Files from OBS,之后找到自己的模型存储再OBS的路径就行了,注意这里目前一次只能导入一个文件,所以需要两次操作,一次是导入.pb模型,一次是导入转换的配置文件,暂不能导入文件夹哦。

接下来选中文件,导入就行了:

再来一次,选资额.cfg配置文件哦:

太棒了,你已经成功了一大半了哦,我们能在左侧目录下看到导入的文件了,默认是导入到根目录哦:

下面进行模型转换了,如果遇到什么问题,建议参考文档,不行的话,到论坛提问就好。

文档链接:https://support.huaweicloud.com/usermanual-hilens/hilens_02_0098.html

论坛链接:https://bbs.huaweicloud.com/forum/forum-771-1.html

基本转换操作在文档中做了详细的介绍,可以看出来工作人员还是很用心的哈:

就是先在上面菜单栏开个终端,这个使用linux系统或者熟悉ModelArts的NoteBook的用户都应该比较熟悉了吧。之后用命令行转换模型

在界面最先面的终端输入如下命令即可

/opt/ddk/bin/aarch64-linux-gcc7.3.0/omg --model=./yolo3_resnet18.pb --input_shape='images:1,352,640,3' --framework=3 --output=./yolo3_resnet18 
--insert_op_conf=./insert_op_conf.cfg

如果你希望深入了解模型转换的设置,可以参考:

https://console.huaweicloud.com/modelarts/?region=cn-north-4#/aiMarket/aiMarketModelDetail/overview?modelId=7087008a-7eec-4977-8b66-3a7703e9fd22&type=algo

https://www.huaweicloud.com/ascend/doc/Atlas200DK/1.31.0.0(beta)/zh/zh-cn_topic_0211633857.html/zh/zh-cn_topic_0211633857.html)

因为模板默认从左侧目录文件夹model中调用模型(这一点,在代码中模型路径部分有写,而文件夹中的face_detection_demo.om是选择人脸检测模板自带的模型,关于模板问题,后面会讲的,可以自行删除哦),所以我们需要将生成的.om模型复制粘贴到该文件夹中,很简单的,直接选中.om模型,直接像在自己电脑上那样 在键盘使用快捷键Ctrl + C(表示复制选中文件), 之后选中model文件夹,使用Ctrl + V (表示粘贴)就行了,不得不说这个设计蛮人性化的哦,用户学习成本很低。

最终,我们得到这样界面,就行了:

如果你不想自己训练,只是测试一下,这里提供了转换完成的.om模型,下载后,上传到HiLens Studio的model文件夹下即可使用:

链接:https://pan.baidu.com/s/1GT1B... 

提取码:c4d3

4. 编辑代码

因为使用的是HiLens Studio,请再次确认已申请公测,并通过哦。相关编辑代码部分,比较简单。和大多数IDE类似,首先要创建工程,这里提供了很多模板,不过目前还不能创建空模板,所以自己选一个模板就行,我选的是人脸检测模板,选择后,点击确定就行了哦。之后的简单项目名称之类的,可参照下图哦。

创建之后,就能进入HiLens Studio类似于IDE的界面了,有点像PyCharm,感觉很不错,,可以切换主题哦,支持暗夜黑风格,这个切换就留给你自己去找找吧,不过都是英文界面哦。进入这里,大体可以看到这些东西,主要介绍了这里会用到的部分:

好了,这里我们首先要修改主程序main.py,为了代码的简介和模块化,将预处理和推理结果解析部分单独写为一个utils.py文件,方便理解程序运行架构,这里没什么具体要介绍的,直接上代码吧,如果有问题的话,可以在下面评论提问哦。

main.py主代码

# -*- coding: utf-8 -*-
# !/usr/bin/python3
# SkillFramework 1.0.0 YOLOv3_Resnet18_Person

import cv2
import numpy as np
import os
import hilens
# 这个postprocess没用哈
from postprocess import im_detect_nms
import utils


# 网络输入尺寸
input_height = 352
input_width = 640


def main(work_path):
    hilens.init("YOLOv3Resnet18Person")  # 参数要与创建技能时填写的检验值保持一致!

    # 模型路径
    model_path = os.path.join(work_path, 'model/yolo3_resnet18.om')
    model = hilens.Model(model_path)

    # hilens studio中VideoCapture如果不填写参数,则默认读取test/camera0.mp4文件,
    # 在hilens kit中不填写参数则读取本地摄像头
    camera = hilens.VideoCapture()
    display_hdmi = hilens.Display(hilens.HDMI)  # 图像通过hdmi输出到屏幕

    while True:
        try:
            # 1. 读取摄像头输入(yuv nv21)
            input_nv21 = camera.read()
            # 2. 转为RGB格式
            input_rgb = cv2.cvtColor(input_nv21, cv2.COLOR_YUV2RGB_NV21)
            # src_image_height = input_bgr.shape[0]
            # src_image_width = input_bgr.shape[1]
            img_preprocess, img_w, img_h = utils.preprocess(input_rgb)  # 缩放为模型输入尺寸
            # 3. 模型推理
            output = model.infer([img_preprocess.flatten()])
            # 4. 结果输出
            bboxes = utils.get_result(output, img_w, img_h)   # 获取检测结果
            output_rgb = utils.draw_boxes(input_rgb, bboxes)  # 在图像上画框
            # 5. 输出图像,必须是yuv nv21形式
            output_nv21 = hilens.cvt_color(output_rgb, hilens.RGB2YUV_NV21)
            display_hdmi.show(output_nv21)
        except Exception:
            break


if __name__ == "__main__":
    main(os.getcwd())

创建后,utils.py的代码如下,如果你想检测更多类别,比如同时检测任何车,可参考我在下面代码最后加的注释部分

# -*- coding: utf-8 -*-
# !/usr/bin/python3
# utils for mask detection

import cv2
import math
import numpy as np


# 检测模型输入尺寸
net_h = 352
net_w = 640

# 检测模型的类别
class_names = ["person"]
class_num   = len(class_names)

# 检测模型的anchors,用于解码出检测框
stride_list = [8, 16, 32]
anchors_1   = np.array([[10,13],   [16,30],   [33,23]])   / stride_list[0]
anchors_2   = np.array([[30,61], [62,45],   [59,119]])   / stride_list[1]
anchors_3   = np.array([[116,90], [156,198], [163,326]]) / stride_list[2]
anchor_list = [anchors_1, anchors_2, anchors_3]

# 检测框的输出阈值、NMS筛选阈值和人形/人脸区域匹配阈值
conf_threshold   = 0.3
iou_threshold    = 0.4
cover_threshold  = 0.8


# 图片预处理:缩放到模型输入尺寸
def preprocess(img_data):
    h, w, c   = img_data.shape
    new_image = cv2.resize(img_data, (net_w, net_h))
    return new_image, w, h
 
def overlap(x1, x2, x3, x4):
    left  = max(x1, x3)
    right = min(x2, x4)
    return right - left

# 计算两个矩形框的IOU
def cal_iou(box1, box2):
    w = overlap(box1[0], box1[2], box2[0], box2[2])
    h = overlap(box1[1], box1[3], box2[1], box2[3])
    if w <= 0 or h <= 0:
        return 0
    inter_area = w * h
    union_area = (box1[2] - box1[0]) * (box1[3] - box1[1]) + (box2[2] - box2[0]) * (box2[3] - box2[1]) - inter_area
    return inter_area * 1.0 / union_area

# 计算两个矩形框的IOU与box2区域的比值
def cover_ratio(box1, box2):
    w = overlap(box1[0], box1[2], box2[0], box2[2])
    h = overlap(box1[1], box1[3], box2[1], box2[3])
    if w <= 0 or h <= 0:
        return 0
    inter_area = w * h
    small_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
    return inter_area * 1.0 / small_area

# 使用NMS筛选检测框
def apply_nms(all_boxes, thres):
    res = []
 
    for cls in range(class_num):        
        cls_bboxes   = all_boxes[cls]
        sorted_boxes = sorted(cls_bboxes, key=lambda d: d[5])[::-1]
 
        p = dict()
        for i in range(len(sorted_boxes)):
            if i in p:
                continue

            truth = sorted_boxes[i]
            for j in range(i+1, len(sorted_boxes)):
                if j in p:
                    continue
                box = sorted_boxes[j]
                iou = cal_iou(box, truth)
                if iou >= thres:
                    p[j] = 1

        for i in range(len(sorted_boxes)):
            if i not in p:
                res.append(sorted_boxes[i])
    return res

# 从模型输出的特征矩阵中解码出检测框的位置、类别、置信度等信息
def decode_bbox(conv_output, anchors, img_w, img_h):

    def _sigmoid(x):
        s = 1 / (1 + np.exp(-x))
        return s
 
    _, h, w = conv_output.shape    
    pred    = conv_output.transpose((1,2,0)).reshape((h * w, 3, 5+class_num))
 
    pred[..., 4:] = _sigmoid(pred[..., 4:])
    pred[..., 0]  = (_sigmoid(pred[..., 0]) + np.tile(range(w), (3, h)).transpose((1,0))) / w
    pred[..., 1]  = (_sigmoid(pred[..., 1]) + np.tile(np.repeat(range(h), w), (3, 1)).transpose((1,0))) / h
    pred[..., 2]  = np.exp(pred[..., 2]) * anchors[:, 0:1].transpose((1,0)) / w
    pred[..., 3]  = np.exp(pred[..., 3]) * anchors[:, 1:2].transpose((1,0)) / h
 
    bbox          = np.zeros((h * w, 3, 4))
    bbox[..., 0]  = np.maximum((pred[..., 0] - pred[..., 2] / 2.0) * img_w, 0)     # x_min
    bbox[..., 1]  = np.maximum((pred[..., 1] - pred[..., 3] / 2.0) * img_h, 0)     # y_min
    bbox[..., 2]  = np.minimum((pred[..., 0] + pred[..., 2] / 2.0) * img_w, img_w) # x_max
    bbox[..., 3]  = np.minimum((pred[..., 1] + pred[..., 3] / 2.0) * img_h, img_h) # y_max
 
    pred[..., :4] = bbox
    pred          = pred.reshape((-1, 5+class_num))
    pred[:, 4]    = pred[:, 4] * pred[:, 5:].max(1)    # 类别
    pred          = pred[pred[:, 4] >= conf_threshold]
    pred[:, 5]    = np.argmax(pred[:, 5:], axis=-1)    # 置信度
 
    all_boxes = [[] for ix in range(class_num)]
    for ix in range(pred.shape[0]):
        box = [int(pred[ix, iy]) for iy in range(4)]
        box.append(int(pred[ix, 5]))
        box.append(pred[ix, 4])
        all_boxes[box[4]-1].append(box)

    return all_boxes

# 从模型输出中得到检测框
def get_result(model_outputs, img_w, img_h):

    num_channel = 3 * (class_num + 5)    
    all_boxes   = [[] for ix in range(class_num)]
    for ix in range(3):
        pred      = model_outputs[2-ix].reshape((num_channel, net_h // stride_list[ix], net_w // stride_list[ix]))
        anchors   = anchor_list[ix]
        boxes     = decode_bbox(pred, anchors, img_w, img_h)        
        all_boxes = [all_boxes[iy] + boxes[iy] for iy in range(class_num)]
 
    res = apply_nms(all_boxes, iou_threshold)    
    return res

# 在图中画出检测框,输出类别信息,注意这里对person类别绘制矩形框
def draw_boxes(img_data, bboxes):
    thickness      = 2
    font_scale     = 1
    text_font      = cv2.FONT_HERSHEY_DUPLEX
    for bbox in bboxes:
        label = int(bbox[4])
        x_min = int(bbox[0])
        y_min = int(bbox[1])
        x_max = int(bbox[2])
        y_max = int(bbox[3])
        score = bbox[5]

        # 1: person 蓝色 
        if label == 0:  
            # print(x_min, y_min, x_max, y_max)
            cv2.rectangle(img_data, (x_min, y_min), (x_max, y_max), (0, 0, 255), thickness)
            # cv2.putText(img_data, 'person', (x_min, y_min - 20), text_font, font_scale, (255, 255, 0), thickness)
            # cv2.putText(img_data, score, (50, 50), text_font, font_scale, (255, 255, 0), thickness)

        # 2:
        '''
        if label == 1:
            # print(x_min, y_min, x_max, y_max)
            cv2.rectangle(img_data, (x_min, y_min), (x_max, y_max), (255, 0, 0), thickness)
            # cv2.putText(img_data, 'person', (x_min, y_min - 20), text_font, font_scale, (255, 255, 0), thickness)
            # cv2.putText(img_data, score, (50, 50), text_font, font_scale, (255, 255, 0), thickness)
 

        else:
            # print("[INFO] Hi, find others.")
            pass
        '''

    return img_data

好,至此,基本代码部分就完成了

下面可以检测测试了,这里提供一段来自MOT多目标挑战赛的视频片段供测试,需要自己上传到HiLens Studio上,十分简单,和本地电脑操作没什么区别,邮件单机左侧空白目录部分,弹出菜单,选择上传即可,对开发者十分友好啊:

视频分辨率1920 * 1080,约136M,不过很快就能上传完成,华为云的带宽和上传速度还是很不错的,不过这也与你自己的网络环境有关的。

视频下载链接为

链接:https://pan.baidu.com/s/1RWUG... 

提取码:iwpo

注意:需要将视频改名为camera0.mp4(选中视频,邮件弹出菜单,选择Rename即可),之后到左侧目录test文件夹下,将该文件夹下的camera0.mp4视频删除,再将刚才改名为camera0.mp4的视频(就是我们上传的视频)拷贝到test文件夹下。

**最终我们得到如下的几个重要文件:
**

接下来,就可以执行程序测试了:

之后,在右上角部分的视频框中就能看到运行结果了,如果你觉得不方便,还可以全屏观看,甚至画中画模式观看都可以呀,在画中画模式下,你可以边做其他的事情,边小窗口观看视频,类似于手机端的分屏操作。

全屏模式效果展示:

画中画模式效果展示(视频可任意拖拽位置哦):

上面两种模式的操作十分简单,和在腾讯、爱奇艺、B站等视频网站操作类似:

最终效果如下面视频所示,这里非常抱歉,由于我是屏幕录制的,且没有切换到全屏模式,不太清晰,建议大家自己试试,在自己的HiLens Studio里看会很清晰的,同时,附上B站视频链接,以防下面视频失效,无法观看:https://www.bilibili.com/vide...

如果你想安装到HiLens Kit上,和原先的操作台类似,在上面视频播放界面下面就有选线的,大体如下,仍然是先安装,后启动就行了:

至此,大功告成,总的来说,HiLens Stuio如开篇所说的,集大成之作,非常好用,这类云端IDE十分新颖,创新型强,极大降低了对开发者本地配置的要求,甚至几十没有硬件设备,也可以调试程序,是边缘计算开发者的福音呀,这是从HiLens,到华为云,再到华为公司,很多人长期积累努力的结果,很不错,这也算华为全栈全场景AI解决方案的一部分吧,期待更加强大,加油。

点击关注,第一时间了解华为云新鲜技术~


华为云开发者联盟
1.4k 声望1.8k 粉丝

生于云,长于云,让开发者成为决定性力量