2

异常处理

Java的异常

在计算机程序运行的过程中,总是会出现各种各样的错误。

有一些错误是用户造成的,比如,希望用户输入一个int类型的年龄,但是用户的输入是abc

// 假设用户输入了abc:
String s = "abc";
int n = Integer.parseInt(s); // NumberFormatException!

程序想要读写某个文件的内容,但是用户已经把它删除了:

// 用户删除了该文件:
String t = readFile("C:\\abc.txt"); // FileNotFoundException!

Java内置了一套异常处理机制,总是使用异常来表示错误。

异常是一种class,因此它本身带有类型信息。异常可以在任何地方抛出,但只需要在上层捕获,这样就和方法调用分离了:

try {
    String s = processFile(“C:\\test.txt”);
    // ok:
} catch (FileNotFoundException e) {
    // file not found:
} catch (SecurityException e) {
    // no read permission:
} catch (IOException e) {
    // io error:
} catch (Exception e) {
    // other error:
}

因为Java的异常是class,它的继承关系如下:

                     ┌───────────┐
                     │  Object   │
                     └───────────┘
                           ▲
                           │
                     ┌───────────┐
                     │ Throwable │
                     └───────────┘
                           ▲
                 ┌─────────┴─────────┐
                 │                   │
           ┌───────────┐       ┌───────────┐
           │   Error   │       │ Exception │
           └───────────┘       └───────────┘
                 ▲                   ▲
         ┌───────┘              ┌────┴──────────┐
         │                      │               │
┌─────────────────┐    ┌─────────────────┐┌───────────┐
│OutOfMemoryError │... │RuntimeException ││IOException│...
└─────────────────┘    └─────────────────┘└───────────┘
                                ▲
                    ┌───────────┴─────────────┐
                    │                         │
         ┌─────────────────────┐ ┌─────────────────────────┐
         │NullPointerException │ │IllegalArgumentException │...
         └─────────────────────┘ └─────────────────────────┘

从继承关系可知:Throwable是异常体系的根,它继承自ObjectThrowable有两个体系:ErrorExceptionError表示严重的错误,程序对此一般无能为力,例如:

  • OutOfMemoryError:内存耗尽
  • NoClassDefFoundError:无法加载某个Class
  • StackOverflowError:栈溢出

Exception则是运行时的错误,它可以被捕获并处理。

某些异常是应用程序逻辑处理的一部分,应该捕获并处理。例如:

  • NumberFormatException:数值类型的格式错误
  • FileNotFoundException:未找到文件
  • SocketException:读取网络失败

还有一些异常是程序逻辑编写不对造成的,应该修复程序本身。例如:

  • NullPointerException:对某个null的对象调用方法或字段
  • IndexOutOfBoundsException:数组索引越界

Exception又分为两大类:

  1. RuntimeException以及它的子类;
  2. RuntimeException(包括IOExceptionReflectiveOperationException等等)

Java规定:

  • 必须捕获的异常,包括Exception及其子类,但不包括RuntimeException及其子类,这种类型的异常称为Checked Exception。
  • 不需要捕获的异常,包括Error及其子类,RuntimeException及其子类。

捕获异常

捕获异常使用try...catch语句,把可能发生异常的代码放到try {...}中,然后使用catch捕获对应的Exception及其子类

public class Main {
    public static void main(String[] args) {
        byte[] bs = toGBK("中文");
        System.out.println(Arrays.toString(bs));
    }

    static byte[] toGBK(String s) {
        try {
            // 用指定编码转换String为byte[]:
            return s.getBytes("GBK");
        } catch (UnsupportedEncodingException e) {
            // 如果系统不支持GBK编码,会捕获到UnsupportedEncodingException:
            System.out.println(e); // 打印异常信息
            return s.getBytes(); // 尝试使用用默认编码
        }
    }
}

如果我们不捕获UnsupportedEncodingException,会出现编译失败的问题

编译器会报错,错误信息类似:unreported exception UnsupportedEncodingException; must be caught or declared to be thrown,并且准确地指出需要捕获的语句是return s.getBytes("GBK");。意思是说,像UnsupportedEncodingException这样的Checked Exception,必须被捕获。

这是因为String.getBytes(String)方法定义是:

public byte[] getBytes(String charsetName) throws UnsupportedEncodingException {
    ...
}

在方法定义的时候,使用throws Xxx表示该方法可能抛出的异常类型。调用方在调用的时候,必须强制捕获这些异常,否则编译器会报错。

小结

Java使用异常来表示错误,并通过try ... catch捕获异常;

Java的异常是class,并且从Throwable继承;

Error是无需捕获的严重错误,Exception是应该捕获的可处理的错误;

RuntimeException无需强制捕获,非RuntimeException(Checked Exception)需强制捕获,或者用throws声明;

不推荐捕获了异常但不进行任何处理。

捕获异常

在Java中,凡是可能抛出异常的语句,都可以用try ... catch捕获。把可能发生异常的语句放在try { ... }中,然后使用catch捕获对应的Exception及其子类。

多catch语句

可以使用多个catch语句,每个catch分别捕获对应的Exception及其子类。JVM在捕获到异常后,会从上到下匹配catch语句,匹配到某个catch后,执行catch代码块,然后_不再_继续匹配。

简单地说就是:多个catch语句只有一个能被执行。例如:

public static void main(String[] args) {
    try {
        process1();
        process2();
        process3();
    } catch (IOException e) {
        System.out.println(e);
    } catch (NumberFormatException e) {
        System.out.println(e);
    }
}

存在多个catch的时候,catch的顺序非常重要:子类必须写在前面。例如:

public static void main(String[] args) {
    try {
        process1();
        process2();
        process3();
    } catch (IOException e) {
        System.out.println("IO error");
    } catch (UnsupportedEncodingException e) { // 永远捕获不到
        System.out.println("Bad encoding");
    }
}

对于上面的代码,UnsupportedEncodingException异常是永远捕获不到的,因为它是IOException的子类。当抛出UnsupportedEncodingException异常时,会被catch (IOException e) { ... }捕获并执行。

finally语句块保证有无错误都会执行。上述代码可以改写如下:

public static void main(String[] args) {
    try {
        process1();
        process2();
        process3();
    } catch (UnsupportedEncodingException e) {
        System.out.println("Bad encoding");
    } catch (IOException e) {
        System.out.println("IO error");
    } finally {
        System.out.println("END");
    }
}

抛出异常

异常的传播

当某个方法抛出了异常时,如果当前方法没有捕获异常,异常就会被抛到上层调用方法,直到遇到某个try ... catch被捕获为止:

public class Main {
    public static void main(String[] args) {
        try {
            process1();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    static void process1() {
        process2();
    }

    static void process2() {
        Integer.parseInt(null); // 会抛出NumberFormatException
    }
}

通过printStackTrace()可以打印出方法的调用栈,类似:

java.lang.NumberFormatException: null
    at java.base/java.lang.Integer.parseInt(Integer.java:614)
    at java.base/java.lang.Integer.parseInt(Integer.java:770)
    at Main.process2(Main.java:16)
    at Main.process1(Main.java:12)
    at Main.main(Main.java:5)

printStackTrace()对于调试错误非常有用,上述信息表示:NumberFormatException是在java.lang.Integer.parseInt方法中被抛出的,从下往上看,调用层次依次是:

  1. main()调用process1()
  2. process1()调用process2()
  3. process2()调用Integer.parseInt(String)
  4. Integer.parseInt(String)调用Integer.parseInt(String, int)

查看Integer.java源码可知,抛出异常的方法代码如下:

public static int parseInt(String s, int radix) throws NumberFormatException {
    if (s == null) {
        throw new NumberFormatException("null");
    }
    ...
}

并且,每层调用均给出了源代码的行号,可直接定位。

抛出异常

当发生错误时,例如,用户输入了非法的字符,我们就可以抛出异常。

如何抛出异常?参考Integer.parseInt()方法,抛出异常分两步:

  1. 创建某个Exception的实例;
  2. throw语句抛出。

下面是一个例子:

void process2(String s) {
    if (s==null) {
        NullPointerException e = new NullPointerException();
        throw e;
    }
}

实际上,绝大部分抛出异常的代码都会合并写成一行:

void process2(String s) {
    if (s==null) {
        throw new NullPointerException();
    }
}

如果一个方法捕获了某个异常后,又在catch子句中抛出新的异常,就相当于把抛出的异常类型“转换”了:

void process1(String s) {
    try {
        process2();
    } catch (NullPointerException e) {
        throw new IllegalArgumentException();
    }
}

void process2(String s) {
    if (s==null) {
        throw new NullPointerException();
    }
}

自定义异常

Java标准库定义的常用异常包括:

Exception
│
├─ RuntimeException
│  │
│  ├─ NullPointerException
│  │
│  ├─ IndexOutOfBoundsException
│  │
│  ├─ SecurityException
│  │
│  └─ IllegalArgumentException
│     │
│     └─ NumberFormatException
│
├─ IOException
│  │
│  ├─ UnsupportedCharsetException
│  │
│  ├─ FileNotFoundException
│  │
│  └─ SocketException
│
├─ ParseException
│
├─ GeneralSecurityException
│
├─ SQLException
│
└─ TimeoutException

当我们在代码中需要抛出异常时,尽量使用JDK已定义的异常类型。例如,参数检查不合法,应该抛出IllegalArgumentException

static void process1(int age) {
    if (age <= 0) {
        throw new IllegalArgumentException();
    }
}

在一个大型项目中,可以自定义新的异常类型,但是,保持一个合理的异常继承体系是非常重要的。

一个常见的做法是自定义一个BaseException作为“根异常”,然后,派生出各种业务类型的异常。

BaseException需要从一个适合的Exception派生,通常建议从RuntimeException派生:

public class BaseException extends RuntimeException {
}

其他业务类型的异常就可以从BaseException派生:

public class UserNotFoundException extends BaseException {
}

public class LoginFailedException extends BaseException {
}

...

自定义的BaseException应该提供多个构造方法:

public class BaseException extends RuntimeException {
    public BaseException() {
        super();
    }

    public BaseException(String message, Throwable cause) {
        super(message, cause);
    }

    public BaseException(String message) {
        super(message);
    }

    public BaseException(Throwable cause) {
        super(cause);
    }
}

上述构造方法实际上都是原样照抄RuntimeException。这样,抛出异常的时候,就可以选择合适的构造方法。通过IDE可以根据父类快速生成子类的构造方法。

小结

抛出异常时,尽量复用JDK已定义的异常类型;

自定义异常体系时,推荐从RuntimeException派生“根异常”,再派生出业务异常;

自定义异常时,应该提供多种构造方法。

NullPointerException

在所有的RuntimeException异常中,Java程序员最熟悉的恐怕就是NullPointerException了。

NullPointerException即空指针异常,俗称NPE。如果一个对象为null,调用其方法或访问其字段就会产生NullPointerException,这个异常通常是由JVM抛出的,例如:

public class Main {
    public static void main(String[] args) {
        String s = null;
        System.out.println(s.toLowerCase());
    }
}

指针这个概念实际上源自C语言,Java语言中并无指针。我们定义的变量实际上是引用,Null Pointer更确切地说是Null Reference,不过两者区别不大。

处理NullPointerException

如果遇到NullPointerException,我们应该如何处理?首先,必须明确,NullPointerException是一种代码逻辑错误,遇到NullPointerException,遵循原则是早暴露,早修复,严禁使用catch来隐藏这种编码错误:

// 错误示例: 捕获NullPointerException
try {
    transferMoney(from, to, amount);
} catch (NullPointerException e) {
}

好的编码习惯可以极大地降低NullPointerException的产生,例如:

成员变量在定义时初始化:

public class Person {
    private String name = "";
}

使用空字符串""而不是默认的null可避免很多NullPointerException,编写业务逻辑时,用空字符串""表示未填写比null安全得多。

返回空字符串""、空数组而不是null

public String[] readLinesFromFile(String file) {
    if (getFileSize(file) == 0) {
        // 返回空数组而不是null:
        return new String[0];
    }
    ...
}

这样可以使得调用方无需检查结果是否为null

使用断言

断言(Assertion)是一种调试程序的方式。在Java中,使用assert关键字来实现断言。

我们先看一个例子:

public static void main(String[] args) {
    double x = Math.abs(-123.45);
    assert x >= 0;
    System.out.println(x);
}

语句assert x >= 0;即为断言,断言条件x >= 0预期为true。如果计算结果为false,则断言失败,抛出AssertionError

使用assert语句时,还可以添加一个可选的断言消息:

assert x >= 0 : "x must >= 0";

这样,断言失败的时候,AssertionError会带上消息x must >= 0,更加便于调试。

Java断言的特点是:断言失败时会抛出AssertionError,导致程序结束退出。因此,断言不能用于可恢复的程序错误,只应该用于开发和测试阶段。

对于可恢复的程序错误,不应该使用断言。例如:

void sort(int[] arr) {
    assert arr != null;
}

应该抛出异常并在上层捕获:

void sort(int[] arr) {
    if (x == null) {
        throw new IllegalArgumentException("array cannot be null");
    }
}

小结

断言是一种调试方式,断言失败会抛出AssertionError,只能在开发和测试阶段启用断言;

对可恢复的错误不能使用断言,而应该抛出异常;

断言很少被使用,更好的方法是编写单元测试。

使用JDK Logging

在编写程序的过程中,发现程序运行结果与预期不符,怎么办?当然是用System.out.println()打印出执行过程中的某些变量,观察每一步的结果与代码逻辑是否符合,然后有针对性地修改代码。

代码改好了怎么办?当然是删除没有用的System.out.println()语句了。

如果改代码又改出问题怎么办?再加上System.out.println()

反复这么搞几次,很快大家就发现使用System.out.println()非常麻烦。

怎么办?

解决方法是使用日志。

那什么是日志?日志就是Logging,它的目的是为了取代System.out.println()

输出日志,而不是用System.out.println(),有以下几个好处:

  1. 可以设置输出样式,避免自己每次都写"ERROR: " + var
  2. 可以设置输出级别,禁止某些级别输出。例如,只输出错误日志;
  3. 可以被重定向到文件,这样可以在程序运行结束后查看日志;
  4. 可以按包名控制日志级别,只输出某些包打的日志;
  5. 可以……

因为Java标准库内置了日志包java.util.logging,我们可以直接用。先看一个简单的例子:

public class Hello {
    public static void main(String[] args) {
        Logger logger = Logger.getGlobal();
        logger.info("start process...");
        logger.warning("memory is running out...");
        logger.fine("ignored.");
        logger.severe("process will be terminated...");
    }
}

运行上述代码,得到类似如下的输出:

Mar 02, 2019 6:32:13 PM Hello main
INFO: start process...
Mar 02, 2019 6:32:13 PM Hello main
WARNING: memory is running out...
Mar 02, 2019 6:32:13 PM Hello main
SEVERE: process will be terminated...

对比可见,使用日志最大的好处是,它自动打印了时间、调用类、调用方法等很多有用的信息。

再仔细观察发现,4条日志,只打印了3条,logger.fine()没有打印。这是因为,日志的输出可以设定级别。JDK的Logging定义了7个日志级别,从严重到普通:

  • SEVERE
  • WARNING
  • INFO
  • CONFIG
  • FINE
  • FINER
  • FINEST

因为默认级别是INFO,因此,INFO级别以下的日志,不会被打印出来。使用日志级别的好处在于,调整级别,就可以屏蔽掉很多调试相关的日志输出。

使用Commons Logging

和Java标准库提供的日志不同,Commons Logging是一个第三方日志库,它是由Apache创建的日志模块。

Commons Logging的特色是,它可以挂接不同的日志系统,并通过配置文件指定挂接的日志系统。默认情况下,Commons Loggin自动搜索并使用Log4j(Log4j是另一个流行的日志系统),如果没有找到Log4j,再使用JDK Logging。

反射

什么是反射?

反射就是Reflection,Java的反射是指程序在运行期可以拿到一个对象的所有信息。

正常情况下,如果我们要调用一个对象的方法,或者访问一个对象的字段,通常会传入对象实例:

// Main.java
import com.itranswarp.learnjava.Person;

public class Main {
    String getFullName(Person p) {
        return p.getFirstName() + " " + p.getLastName();
    }
}

但是,如果不能获得Person类,只有一个Object实例,比如这样:

String getFullName(Object obj) {
    return ???
}

怎么办?有童鞋会说:强制转型啊!

String getFullName(Object obj) {
    Person p = (Person) obj;
    return p.getFirstName() + " " + p.getLastName();
}

强制转型的时候,你会发现一个问题:编译上面的代码,仍然需要引用Person类。不然,去掉import语句,你看能不能编译通过?

所以,反射是为了解决在运行期,对某个实例一无所知的情况下,如何调用其方法。

Class类

JVM为每个加载的classinterface创建了对应的Class实例来保存classinterface的所有信息;
获取一个class对应的Class实例后,就可以获取该class的所有信息;
通过Class实例获取class信息的方法称为反射(Reflection);
JVM总是动态加载class,可以在运行期根据条件来控制加载class。

访问字段

Java的反射API提供的Field类封装了字段的所有信息:
通过Class实例的方法可以获取Field实例:getField()getFields()getDeclaredField()getDeclaredFields()
通过Field实例可以获取字段信息:getName()getType()getModifiers()
通过Field实例可以读取或设置某个对象的字段,如果存在访问限制,要首先调用setAccessible(true)来访问非public字段。
通过反射读写字段是一种非常规方法,它会破坏对象的封装。

调用方法

当我们获取到一个Method对象时,就可以对它进行调用。我们以下面的代码为例:

String s = "Hello world";
String r = s.substring(6); // "world"

如果用反射来调用substring方法,需要以下代码:

 // String对象:
String s = "Hello world";
// 获取String substring(int)方法,参数为int:
Method m = String.class.getMethod("substring", int.class);
// 在s对象上调用该方法并获取结果:
String r = (String) m.invoke(s, 6);
// 打印调用结果:
System.out.println(r);

Java的反射API提供的Method对象封装了方法的所有信息:
通过Class实例的方法可以获取Method实例:getMethod()getMethods()getDeclaredMethod()getDeclaredMethods()
通过Method实例可以获取方法信息:getName()getReturnType()getParameterTypes()getModifiers()
通过Method实例可以调用某个对象的方法:Object invoke(Object instance, Object... parameters)
通过设置setAccessible(true)来访问非public方法;
通过反射调用方法时,仍然遵循多态原则。

调用构造方法

我们通常使用new操作符创建新的实例:

Person p = new Person();

如果通过反射来创建新的实例,可以调用Class提供的newInstance()方法:

Person p = Person.class.newInstance();

Constructor对象封装了构造方法的所有信息;

通过Class实例的方法可以获取Constructor实例:getConstructor()getConstructors()getDeclaredConstructor()getDeclaredConstructors()

通过Constructor实例可以创建一个实例对象:newInstance(Object... parameters); 通过设置setAccessible(true)来访问非public构造方法。

注解

使用注解

注解是放在Java源码的类、方法、字段、参数前的一种特殊“注释”:

// this is a component:
@Resource("hello")
public class Hello {
    @Inject
    int n;

    @PostConstruct
    public void hello(@Param String name) {
        System.out.println(name);
    }

    @Override
    public String toString() {
        return "Hello";
    }
}

注释会被编译器直接忽略,注解则可以被编译器打包进入class文件,因此,注解是一种用作标注的“元数据”。

注解的作用

从JVM的角度看,注解本身对代码逻辑没有任何影响,如何使用注解完全由工具决定。

Java的注解可以分为三类:

第一类是由编译器使用的注解,例如:

  • @Override:让编译器检查该方法是否正确地实现了覆写;
  • @SuppressWarnings:告诉编译器忽略此处代码产生的警告。

这类注解不会被编译进入.class文件,它们在编译后就被编译器扔掉了。

第二类是由工具处理.class文件使用的注解,比如有些工具会在加载class的时候,对class做动态修改,实现一些特殊的功能。这类注解会被编译进入.class文件,但加载结束后并不会存在于内存中。这类注解只被一些底层库使用,一般我们不必自己处理。

第三类是在程序运行期能够读取的注解,它们在加载后一直存在于JVM中,这也是最常用的注解。例如,一个配置了@PostConstruct的方法会在调用构造方法后自动被调用(这是Java代码读取该注解实现的功能,JVM并不会识别该注解)。

定义一个注解时,还可以定义配置参数。配置参数可以包括:

  • 所有基本类型;
  • String;
  • 枚举类型;
  • 基本类型、String、Class以及枚举的数组。

因为配置参数必须是常量,所以,上述限制保证了注解在定义时就已经确定了每个参数的值。

注解的配置参数可以有默认值,缺少某个配置参数时将使用默认值。

此外,大部分注解会有一个名为value的配置参数,对此参数赋值,可以只写常量,相当于省略了value参数。

如果只写注解,相当于全部使用默认值。

举个栗子,对以下代码:

public class Hello {
    @Check(min=0, max=100, value=55)
    public int n;

    @Check(value=99)
    public int p;

    @Check(99) // @Check(value=99)
    public int x;

    @Check
    public int y;
}

@Check就是一个注解。第一个@Check(min=0, max=100, value=55)明确定义了三个参数,第二个@Check(value=99)只定义了一个value参数,它实际上和@Check(99)是完全一样的。最后一个@Check表示所有参数都使用默认值。

小结

注解(Annotation)是Java语言用于工具处理的标注:

注解可以配置参数,没有指定配置的参数使用默认值;

如果参数名称是value,且只有一个参数,那么可以省略参数名称。

定义注解

Java语言使用@interface语法来定义注解(Annotation),它的格式如下:

public @interface Report {
    int type() default 0;
    String level() default "info";
    String value() default "";
}

注解的参数类似无参数方法,可以用default设定一个默认值(强烈推荐)。最常用的参数应当命名为value

元注解

元注解

有一些注解可以修饰其他注解,这些注解就称为元注解(meta annotation)。Java标准库已经定义了一些元注解,我们只需要使用元注解,通常不需要自己去编写元注解。

@Target

最常用的元注解是@Target。使用@Target可以定义Annotation能够被应用于源码的哪些位置:

  • 类或接口:ElementType.TYPE
  • 字段:ElementType.FIELD
  • 方法:ElementType.METHOD
  • 构造方法:ElementType.CONSTRUCTOR
  • 方法参数:ElementType.PARAMETER

例如,定义注解@Report可用在方法上,我们必须添加一个@Target(ElementType.METHOD)

@Target(ElementType.METHOD)
public @interface Report {
    int type() default 0;
    String level() default "info";
    String value() default "";
}

定义注解@Report可用在方法或字段上,可以把@Target注解参数变为数组{ ElementType.METHOD, ElementType.FIELD }

@Target({
    ElementType.METHOD,
    ElementType.FIELD
})
public @interface Report {
    ...
}

实际上@Target定义的valueElementType[]数组,只有一个元素时,可以省略数组的写法。

@Retention

另一个重要的元注解@Retention定义了Annotation的生命周期:

  • 仅编译期:RetentionPolicy.SOURCE
  • 仅class文件:RetentionPolicy.CLASS
  • 运行期:RetentionPolicy.RUNTIME

如果@Retention不存在,则该Annotation默认为CLASS。因为通常我们自定义的Annotation都是RUNTIME,所以,务必要加上@Retention(RetentionPolicy.RUNTIME)这个元注解:

@Retention(RetentionPolicy.RUNTIME)
public @interface Report {
    int type() default 0;
    String level() default "info";
    String value() default "";
}
@Repeatable

使用@Repeatable这个元注解可以定义Annotation是否可重复。这个注解应用不是特别广泛。

@Inherited

使用@Inherited定义子类是否可继承父类定义的Annotation@Inherited仅针对@Target(ElementType.TYPE)类型的annotation有效,并且仅针对class的继承,对interface的继承无效:

@Inherited
@Target(ElementType.TYPE)
public @interface Report {
    int type() default 0;
    String level() default "info";
    String value() default "";
}

在使用的时候,如果一个类用到了@Report

@Report(type=1)
public class Person {
}

则它的子类默认也定义了该注解:

public class Student extends Person {
}

如何定义Annotation

我们总结一下定义Annotation的步骤:

第一步,用@interface定义注解:

public @interface Report {
}

第二步,添加参数、默认值:

public @interface Report {
    int type() default 0;
    String level() default "info";
    String value() default "";
}

把最常用的参数定义为value(),推荐所有参数都尽量设置默认值。

第三步,用元注解配置注解:

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Report {
    int type() default 0;
    String level() default "info";
    String value() default "";
}

其中,必须设置@Target@Retention@Retention一般设置为RUNTIME,因为我们自定义的注解通常要求在运行期读取。一般情况下,不必写@Inherited@Repeatable

小结

Java使用@interface定义注解:

可定义多个参数和默认值,核心参数使用value名称;

必须设置@Target来指定Annotation可以应用的范围;

应当设置@Retention(RetentionPolicy.RUNTIME)便于运行期读取该Annotation

处理注解

可以在运行期通过反射读取RUNTIME类型的注解,注意千万不要漏写@Retention(RetentionPolicy.RUNTIME),否则运行期无法读取到该注解。

可以通过程序处理注解来实现相应的功能:

  • 对JavaBean的属性值按规则进行检查;
  • JUnit会自动运行@Test标记的测试方法。

注解如何使用,完全由程序自己决定。例如,JUnit是一个测试框架,它会自动运行所有标记为@Test的方法。

我们来看一个@Range注解,我们希望用它来定义一个String字段的规则:字段长度满足@Range的参数定义:

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.FIELD)
public @interface Range {
    int min() default 0;
    int max() default 255;
}

在某个JavaBean中,我们可以使用该注解:

public class Person {
    @Range(min=1, max=20)
    public String name;

    @Range(max=10)
    public String city;
}

但是,定义了注解,本身对程序逻辑没有任何影响。我们必须自己编写代码来使用注解。这里,我们编写一个Person实例的检查方法,它可以检查Person实例的String字段长度是否满足@Range的定义:

void check(Person person) throws IllegalArgumentException, ReflectiveOperationException {
    // 遍历所有Field:
    for (Field field : person.getClass().getFields()) {
        // 获取Field定义的@Range:
        Range range = field.getAnnotation(Range.class);
        // 如果@Range存在:
        if (range != null) {
            // 获取Field的值:
            Object value = field.get(person);
            // 如果值是String:
            if (value instanceof String) {
                String s = (String) value;
                // 判断值是否满足@Range的min/max:
                if (s.length() < range.min() || s.length() > range.max()) {
                    throw new IllegalArgumentException("Invalid field: " + field.getName());
                }
            }
        }
    }
}

这样一来,我们通过@Range注解,配合check()方法,就可以完成Person实例的检查。注意检查逻辑完全是我们自己编写的,JVM不会自动给注解添加任何额外的逻辑。

泛型

泛型是一种“代码模板”,可以用一套代码套用各种类型。

image.png

什么是泛型

在讲解什么是泛型之前,我们先观察Java标准库提供的ArrayList,它可以看作“可变长度”的数组,因为用起来比数组更方便。

实际上ArrayList内部就是一个Object[]数组,配合存储一个当前分配的长度,就可以充当“可变数组”:

public class ArrayList {
    private Object[] array;
    private int size;
    public void add(Object e) {...}
    public void remove(int index) {...}
    public Object get(int index) {...}
}

如果用上述ArrayList存储String类型,会有这么几个缺点:

  • 需要强制转型;
  • 不方便,易出错。

例如,代码必须这么写:

ArrayList list = new ArrayList();
list.add("Hello");
// 获取到Object,必须强制转型为String:
String first = (String) list.get(0);

很容易出现ClassCastException,因为容易“误转型”:

list.add(new Integer(123));
// ERROR: ClassCastException:
String second = (String) list.get(1);

要解决上述问题,我们可以为String单独编写一种ArrayList

public class StringArrayList {
    private String[] array;
    private int size;
    public void add(String e) {...}
    public void remove(int index) {...}
    public String get(int index) {...}
}

这样一来,存入的必须是String,取出的也一定是String,不需要强制转型,因为编译器会强制检查放入的类型:

StringArrayList list = new StringArrayList();
list.add("Hello");
String first = list.get(0);
// 编译错误: 不允许放入非String类型:
list.add(new Integer(123));

问题暂时解决。

然而,新的问题是,如果要存储Integer,还需要为Integer单独编写一种ArrayList

public class IntegerArrayList {
    private Integer[] array;
    private int size;
    public void add(Integer e) {...}
    public void remove(int index) {...}
    public Integer get(int index) {...}
}

实际上,还需要为其他所有class单独编写一种ArrayList

  • LongArrayList
  • DoubleArrayList
  • PersonArrayList
  • ...

这是不可能的,JDK的class就有上千个,而且它还不知道其他人编写的class。

为了解决新的问题,我们必须把ArrayList变成一种模板:ArrayList<T>,代码如下:

public class ArrayList<T> {
    private T[] array;
    private int size;
    public void add(T e) {...}
    public void remove(int index) {...}
    public T get(int index) {...}
}

T可以是任何class。这样一来,我们就实现了:编写一次模版,可以创建任意类型的ArrayList

// 创建可以存储String的ArrayList:
ArrayList<String> strList = new ArrayList<String>();
// 创建可以存储Float的ArrayList:
ArrayList<Float> floatList = new ArrayList<Float>();
// 创建可以存储Person的ArrayList:
ArrayList<Person> personList = new ArrayList<Person>();

因此,泛型就是定义一种模板,例如ArrayList<T>,然后在代码中为用到的类创建对应的ArrayList<类型>

ArrayList<String> strList = new ArrayList<String>();

由编译器针对类型作检查:

strList.add("hello"); // OK
String s = strList.get(0); // OK
strList.add(new Integer(123)); // compile error!
Integer n = strList.get(0); // compile error!

这样一来,既实现了编写一次,万能匹配,又通过编译器保证了类型安全:这就是泛型。

向上转型

在Java标准库中的ArrayList<T>实现了List<T>接口,它可以向上转型为List<T>

public class ArrayList<T> implements List<T> {
    ...
}

List<String> list = new ArrayList<String>();

即类型ArrayList<T>可以向上转型为List<T>

要_特别注意_:不能把ArrayList<Integer>向上转型为ArrayList<Number>List<Number>

这是为什么呢?假设ArrayList<Integer>可以向上转型为ArrayList<Number>,观察一下代码:

// 创建ArrayList<Integer>类型:
ArrayList<Integer> integerList = new ArrayList<Integer>();
// 添加一个Integer:
integerList.add(new Integer(123));
// “向上转型”为ArrayList<Number>:
ArrayList<Number> numberList = integerList;
// 添加一个Float,因为Float也是Number:
numberList.add(new Float(12.34));
// 从ArrayList<Integer>获取索引为1的元素(即添加的Float):
Integer n = integerList.get(1); // ClassCastException!

我们把一个ArrayList<Integer>转型为ArrayList<Number>类型后,这个ArrayList<Number>就可以接受Float类型,因为FloatNumber的子类。但是,ArrayList<Number>实际上和ArrayList<Integer>是同一个对象,也就是ArrayList<Integer>类型,它不可能接受Float类型, 所以在获取Integer的时候将产生ClassCastException

实际上,编译器为了避免这种错误,根本就不允许把ArrayList<Integer>转型为ArrayList<Number>

ArrayList<Integer>和ArrayList<Number>两者完全没有继承关系。

小结

泛型就是编写模板代码来适应任意类型;

泛型的好处是使用时不必对类型进行强制转换,它通过编译器对类型进行检查;

注意泛型的继承关系:可以把ArrayList<Integer>向上转型为List<Integer>T不能变!),但不能把ArrayList<Integer>向上转型为ArrayList<Number>T不能变成父类)。

使用泛型

使用ArrayList时,如果不定义泛型类型时,泛型类型实际上就是Object

// 编译器警告:
List list = new ArrayList();
list.add("Hello");
list.add("World");
String first = (String) list.get(0);
String second = (String) list.get(1);

此时,只能把<T>当作Object使用,没有发挥泛型的优势。

当我们定义泛型类型<String>后,List<T>的泛型接口变为强类型List<String>

// 无编译器警告:
List<String> list = new ArrayList<String>();
list.add("Hello");
list.add("World");
// 无强制转型:
String first = list.get(0);
String second = list.get(1);

当我们定义泛型类型<Number>后,List<T>的泛型接口变为强类型List<Number>

List<Number> list = new ArrayList<Number>();
list.add(new Integer(123));
list.add(new Double(12.34));
Number first = list.get(0);
Number second = list.get(1);

编译器如果能自动推断出泛型类型,就可以省略后面的泛型类型。例如,对于下面的代码:

List<Number> list = new ArrayList<Number>();

编译器看到泛型类型List<Number>就可以自动推断出后面的ArrayList<T>的泛型类型必须是ArrayList<Number>,因此,可以把代码简写为:

// 可以省略后面的Number,编译器可以自动推断泛型类型:
List<Number> list = new ArrayList<>();

泛型接口

除了ArrayList<T>使用了泛型,还可以在接口中使用泛型。例如,Arrays.sort(Object[])可以对任意数组进行排序,但待排序的元素必须实现Comparable<T>这个泛型接口:

public interface Comparable<T> {
    /**
     * 返回负数: 当前实例比参数o小
     * 返回0: 当前实例与参数o相等
     * 返回正数: 当前实例比参数o大
     */
    int compareTo(T o);
}

小结

使用泛型时,把泛型参数<T>替换为需要的class类型,例如:ArrayList<String>ArrayList<Number>等;

可以省略编译器能自动推断出的类型,例如:List<String> list = new ArrayList<>();

不指定泛型参数类型时,编译器会给出警告,且只能将<T>视为Object类型;

可以在接口中定义泛型类型,实现此接口的类必须实现正确的泛型类型。

编写泛型

编写泛型类比普通类要复杂。通常来说,泛型类一般用在集合类中,例如ArrayList<T>,我们很少需要编写泛型类。

如果我们确实需要编写一个泛型类,那么,应该如何编写它?

可以按照以下步骤来编写一个泛型类。

首先,按照某种类型,例如:String,来编写类:

public class Pair {
    private String first;
    private String last;
    public Pair(String first, String last) {
        this.first = first;
        this.last = last;
    }
    public String getFirst() {
        return first;
    }
    public String getLast() {
        return last;
    }
}

最后,把特定类型String替换为T,并申明<T>

public class Pair<T> {
    private T first;
    private T last;
    public Pair(T first, T last) {
        this.first = first;
        this.last = last;
    }
    public T getFirst() {
        return first;
    }
    public T getLast() {
        return last;
    }
}

熟练后即可直接从T开始编写。

静态方法

编写泛型类时,要特别注意,泛型类型<T>不能用于静态方法。

多个泛型类型

泛型还可以定义多种类型。例如,我们希望Pair不总是存储两个类型一样的对象,就可以使用类型<T, K>

public class Pair<T, K> {
    private T first;
    private K last;
    public Pair(T first, K last) {
        this.first = first;
        this.last = last;
    }
    public T getFirst() { ... }
    public K getLast() { ... }
}

使用的时候,需要指出两种类型:

Pair<String, Integer> p = new Pair<>("test", 123);

Java标准库的Map<K, V>就是使用两种泛型类型的例子。它对Key使用一种类型,对Value使用另一种类型。

小结

编写泛型时,需要定义泛型类型<T>

静态方法不能引用泛型类型<T>,必须定义其他类型(例如<K>)来实现静态泛型方法;

泛型可以同时定义多种类型,例如Map<K, V>

擦拭法

Java的泛型是由编译器在编译时实行的,编译器内部永远把所有类型T视为Object处理,但是,在需要转型的时候,编译器会根据T的类型自动为我们实行安全地强制转型。

了解了Java泛型的实现方式——擦拭法,我们就知道了Java泛型的局限:

局限一:<T>不能是基本类型,例如int,因为实际类型是ObjectObject类型无法持有基本类型:

Pair<int> p = new Pair<>(1, 2); // compile error!

局限二:无法取得带泛型的Class

小结

Java的泛型是采用擦拭法实现的;

擦拭法决定了泛型<T>

  • 不能是基本类型,例如:int
  • 不能获取带泛型类型的Class,例如:Pair<String>.class
  • 不能判断带泛型类型的类型,例如:x instanceof Pair<String>
  • 不能实例化T类型,例如:new T()

泛型方法要防止重复定义方法,例如:public boolean equals(T obj)

子类可以获取父类的泛型类型<T>

集合

集合类型是Java标准库中被使用最多的类型。

集合简介

什么是集合(Collection)?集合就是“由若干个确定的元素所构成的整体”。例如,5只小兔构成的集合。

在数学中,我们经常遇到集合的概念。例如:

  • 有限集合:

    • 一个班所有的同学构成的集合;
    • 一个网站所有的商品构成的集合;
    • ...
  • 无限集合:

    • 全体自然数集合:1,2,3,……
    • 有理数集合;
    • 实数集合;
    • ...

为什么要在计算机中引入集合呢?这是为了便于处理一组类似的数据,例如:

  • 计算所有同学的总成绩和平均成绩;
  • 列举所有的商品名称和价格;
  • ……

在Java中,如果一个Java对象可以在内部持有若干其他Java对象,并对外提供访问接口,我们把这种Java对象称为集合。很显然,Java的数组可以看作是一种集合:

String[] ss = new String[10]; // 可以持有10个String对象
ss[0] = "Hello"; // 可以放入String对象
String first = ss[0]; // 可以获取String对象

既然Java提供了数组这种数据类型,可以充当集合,那么,我们为什么还需要其他集合类?这是因为数组有如下限制:

  • 数组初始化后大小不可变;
  • 数组只能按索引顺序存取。

因此,我们需要各种不同类型的集合类来处理不同的数据,例如:

  • 可变大小的顺序链表;
  • 保证无重复元素的集合;
  • ...

Collection

Java标准库自带的java.util包提供了集合类:Collection,它是除Map外所有其他集合类的根接口。Java的java.util包主要提供了以下三种类型的集合:

  • List:一种有序列表的集合,例如,按索引排列的StudentList
  • Set:一种保证没有重复元素的集合,例如,所有无重复名称的StudentSet
  • Map:一种通过键值(key-value)查找的映射表集合,例如,根据Studentname查找对应StudentMap

Java集合的设计有几个特点:一是实现了接口和实现类相分离,例如,有序表的接口是List,具体的实现类有ArrayListLinkedList等,二是支持泛型,我们可以限制在一个集合中只能放入同一种数据类型的元素,例如:

List<String> list = new ArrayList<>(); // 只能放入String类型

最后,Java访问集合总是通过统一的方式——迭代器(Iterator)来实现,它最明显的好处在于无需知道集合内部元素是按什么方式存储的。

由于Java的集合设计非常久远,中间经历过大规模改进,我们要注意到有一小部分集合类是遗留类,不应该继续使用:

  • Hashtable:一种线程安全的Map实现;
  • Vector:一种线程安全的List实现;
  • Stack:基于Vector实现的LIFO的栈。

还有一小部分接口是遗留接口,也不应该继续使用:

  • Enumeration<E>:已被Iterator<E>取代。

小结

Java的集合类定义在java.util包中,支持泛型,主要提供了3种集合类,包括ListSetMap。Java集合使用统一的Iterator遍历,尽量不要使用遗留接口。

使用List

在集合类中,List是最基础的一种集合:它是一种有序列表。

List的行为和数组几乎完全相同:List内部按照放入元素的先后顺序存放,每个元素都可以通过索引确定自己的位置,List的索引和数组一样,从0开始。

数组和List类似,也是有序结构,如果我们使用数组,在添加和删除元素的时候,会非常不方便。例如,从一个已有的数组{'A', 'B', 'C', 'D', 'E'}中删除索引为2的元素:

┌───┬───┬───┬───┬───┬───┐
│ A │ B │ C │ D │ E │   │
└───┴───┴───┴───┴───┴───┘
              │   │
          ┌───┘   │
          │   ┌───┘
          │   │
          ▼   ▼
┌───┬───┬───┬───┬───┬───┐
│ A │ B │ D │ E │   │   │
└───┴───┴───┴───┴───┴───┘

这个“删除”操作实际上是把'C'后面的元素依次往前挪一个位置,而“添加”操作实际上是把指定位置以后的元素都依次向后挪一个位置,腾出来的位置给新加的元素。这两种操作,用数组实现非常麻烦。

因此,在实际应用中,需要增删元素的有序列表,我们使用最多的是ArrayList。实际上,ArrayList在内部使用了数组来存储所有元素。例如,一个ArrayList拥有5个元素,实际数组大小为6(即有一个空位):

size=5
┌───┬───┬───┬───┬───┬───┐
│ A │ B │ C │ D │ E │   │
└───┴───┴───┴───┴───┴───┘

当添加一个元素并指定索引到ArrayList时,ArrayList自动移动需要移动的元素:

size=5
┌───┬───┬───┬───┬───┬───┐
│ A │ B │   │ C │ D │ E │
└───┴───┴───┴───┴───┴───┘

然后,往内部指定索引的数组位置添加一个元素,然后把size1

size=6
┌───┬───┬───┬───┬───┬───┐
│ A │ B │ F │ C │ D │ E │
└───┴───┴───┴───┴───┴───┘

继续添加元素,但是数组已满,没有空闲位置的时候,ArrayList先创建一个更大的新数组,然后把旧数组的所有元素复制到新数组,紧接着用新数组取代旧数组:

size=6
┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ A │ B │ F │ C │ D │ E │   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

现在,新数组就有了空位,可以继续添加一个元素到数组末尾,同时size1

size=7
┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ A │ B │ F │ C │ D │ E │ G │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

可见,ArrayList把添加和删除的操作封装起来,让我们操作List类似于操作数组,却不用关心内部元素如何移动。

我们考察List<E>接口,可以看到几个主要的接口方法:

  • 在末尾添加一个元素:boolean add(E e)
  • 在指定索引添加一个元素:boolean add(int index, E e)
  • 删除指定索引的元素:int remove(int index)
  • 删除某个元素:int remove(Object e)
  • 获取指定索引的元素:E get(int index)
  • 获取链表大小(包含元素的个数):int size()

但是,实现List接口并非只能通过数组(即ArrayList的实现方式)来实现,另一种LinkedList通过“链表”也实现了List接口。在LinkedList中,它的内部每个元素都指向下一个元素:

        ┌───┬───┐   ┌───┬───┐   ┌───┬───┐   ┌───┬───┐
HEAD ──>│ A │ ●─┼──>│ B │ ●─┼──>│ C │ ●─┼──>│ D │   │
        └───┴───┘   └───┴───┘   └───┴───┘   └───┴───┘

通常情况下,我们总是优先使用ArrayList

List的特点

使用List时,我们要关注List接口的规范。List接口允许我们添加重复的元素,即List内部的元素可以重复:

    List<String> list = new ArrayList<>();
    list.add("apple"); // size=1
    list.add("pear"); // size=2
    list.add("apple"); // 允许重复添加元素,size=3
    System.out.println(list.size());

创建List

除了使用ArrayListLinkedList,我们还可以通过List接口提供的of()方法,根据给定元素快速创建List

List<Integer> list = List.of(1, 2, 5);

但是List.of()方法不接受null值,如果传入null,会抛出NullPointerException异常。

遍历List

和数组类型,我们要遍历一个List,完全可以用for循环根据索引配合get(int)方法遍历:

    List<String> list = List.of("apple", "pear", "banana");
    for (int i=0; i<list.size(); i++) {
        String s = list.get(i);
        System.out.println(s);
    }

......

编写equals方法

我们知道List是一种有序链表:List内部按照放入元素的先后顺序存放,并且每个元素都可以通过索引确定自己的位置。

List还提供了boolean contains(Object o)方法来判断List是否包含某个指定元素。此外,int indexOf(Object o)方法可以返回某个元素的索引,如果元素不存在,就返回-1

我们来看一个例子:

    List<String> list = List.of("A", "B", "C");
    System.out.println(list.contains("C")); // true
    System.out.println(list.contains("X")); // false
    System.out.println(list.indexOf("C")); // 2
    System.out.println(list.indexOf("X")); // -1

List中查找元素时,List的实现类通过元素的equals()方法比较两个元素是否相等,因此,放入的元素必须正确覆写equals()方法,Java标准库提供的StringInteger等已经覆写了equals()方法;

编写equals()方法可借助Objects.equals()判断。

如果不在List中查找元素,就不必覆写equals()方法。

使用Map

我们知道,List是一种顺序列表,如果有一个存储学生Student实例的List,要在List中根据name查找某个指定的Student的分数,应该怎么办?

最简单的方法是遍历List并判断name是否相等,然后返回指定元素:

List<Student> list = ...
Student target = null;
for (Student s : list) {
    if ("Xiao Ming".equals(s.name)) {
        target = s;
        break;
    }
}
System.out.println(target.score);

这种需求其实非常常见,即通过一个键去查询对应的值。使用List来实现存在效率非常低的问题,因为平均需要扫描一半的元素才能确定,而Map这种键值(key-value)映射表的数据结构,作用就是能高效通过key快速查找value(元素)。

Map来实现根据name查询某个Student的代码如下:

      Student s = new Student("Xiao Ming", 99);
        Map<String, Student> map = new HashMap<>();
        map.put("Xiao Ming", s); // 将"Xiao Ming"和Student实例映射并关联
        Student target = map.get("Xiao Ming"); // 通过key查找并返回映射的Student实例
        System.out.println(target == s); // true,同一个实例
        System.out.println(target.score); // 99
        Student another = map.get("Bob"); // 通过另一个key查找
        System.out.println(another); // 未找到返回null

通过上述代码可知:Map<K, V>是一种键-值映射表,当我们调用put(K key, V value)方法时,就把keyvalue做了映射并放入Map。当我们调用V get(K key)时,就可以通过key获取到对应的value。如果key不存在,则返回null。和List类似,Map也是一个接口,最常用的实现类是HashMap

如果只是想查询某个key是否存在,可以调用boolean containsKey(K key)方法。

如果我们在存储Map映射关系的时候,对同一个key调用两次put()方法,分别放入不同的value,会有什么问题呢?
重复放入key-value并不会有任何问题,但是一个key只能关联一个value。在上面的代码中,一开始我们把key对象"apple"映射到Integer对象123,然后再次调用put()方法把"apple"映射到789,这时,原来关联的value对象123就被“冲掉”了。实际上,put()方法的签名是V put(K key, V value),如果放入的key已经存在,put()方法会返回被删除的旧的value,否则,返回null

遍历Map

Map来说,要遍历key可以使用for each循环遍历Map实例的keySet()方法返回的Set集合,它包含不重复的key的集合:

    Map<String, Integer> map = new HashMap<>();
    map.put("apple", 123);
    map.put("pear", 456);
    map.put("banana", 789);
    for (String key : map.keySet()) {
        Integer value = map.get(key);
        System.out.println(key + " = " + value);
    }

MapList不同的是,Map存储的是key-value的映射关系,并且,它_不保证顺序_。在遍历的时候,遍历的顺序既不一定是put()时放入的key的顺序,也不一定是key的排序顺序。使用Map时,任何依赖顺序的逻辑都是不可靠的。以HashMap为例,假设我们放入"A""B""C"这3个key,遍历的时候,每个key会保证被遍历一次且仅遍历一次,但顺序完全没有保证,甚至对于不同的JDK版本,相同的代码遍历的输出顺序都是不同的!

使用Map

阅读: 1274028


我们知道,List是一种顺序列表,如果有一个存储学生Student实例的List,要在List中根据name查找某个指定的Student的分数,应该怎么办?

最简单的方法是遍历List并判断name是否相等,然后返回指定元素:

List<Student> list = ...
Student target = null;
for (Student s : list) {
    if ("Xiao Ming".equals(s.name)) {
        target = s;
        break;
    }
}
System.out.println(target.score);

这种需求其实非常常见,即通过一个键去查询对应的值。使用List来实现存在效率非常低的问题,因为平均需要扫描一半的元素才能确定,而Map这种键值(key-value)映射表的数据结构,作用就是能高效通过key快速查找value(元素)。

Map来实现根据name查询某个Student的代码如下:

import java.util.HashMap;
import java.util.Map;

Run

通过上述代码可知:Map<K, V>是一种键-值映射表,当我们调用put(K key, V value)方法时,就把keyvalue做了映射并放入Map。当我们调用V get(K key)时,就可以通过key获取到对应的value。如果key不存在,则返回null。和List类似,Map也是一个接口,最常用的实现类是HashMap

如果只是想查询某个key是否存在,可以调用boolean containsKey(K key)方法。

如果我们在存储Map映射关系的时候,对同一个key调用两次put()方法,分别放入不同的value,会有什么问题呢?例如:

import java.util.HashMap;
import java.util.Map;

Run

重复放入key-value并不会有任何问题,但是一个key只能关联一个value。在上面的代码中,一开始我们把key对象"apple"映射到Integer对象123,然后再次调用put()方法把"apple"映射到789,这时,原来关联的value对象123就被“冲掉”了。实际上,put()方法的签名是V put(K key, V value),如果放入的key已经存在,put()方法会返回被删除的旧的value,否则,返回null

始终牢记:Map中不存在重复的key,因为放入相同的key,只会把原有的key-value对应的value给替换掉。

此外,在一个Map中,虽然key不能重复,但value是可以重复的:

Map<String, Integer> map = new HashMap<>();
map.put("apple", 123);
map.put("pear", 123); // ok

遍历Map

Map来说,要遍历key可以使用for each循环遍历Map实例的keySet()方法返回的Set集合,它包含不重复的key的集合:

import java.util.HashMap;
import java.util.Map;

Run

同时遍历keyvalue可以使用for each循环遍历Map对象的entrySet()集合,它包含每一个key-value映射:

import java.util.HashMap;
import java.util.Map;

Run

MapList不同的是,Map存储的是key-value的映射关系,并且,它_不保证顺序_。在遍历的时候,遍历的顺序既不一定是put()时放入的key的顺序,也不一定是key的排序顺序。使用Map时,任何依赖顺序的逻辑都是不可靠的。以HashMap为例,假设我们放入"A""B""C"这3个key,遍历的时候,每个key会保证被遍历一次且仅遍历一次,但顺序完全没有保证,甚至对于不同的JDK版本,相同的代码遍历的输出顺序都是不同的!

遍历Map时,不可假设输出的key是有序的!

小结

Map是一种映射表,可以通过key快速查找value

可以通过for each遍历keySet(),也可以通过for each遍历entrySet(),直接获取key-value

最常用的一种Map实现是HashMap

编写equals和hashCode

总结

要正确使用HashMap,作为key的类必须正确覆写equals()hashCode()方法;

一个类如果覆写了equals(),就必须覆写hashCode(),并且覆写规则是:

  • 如果equals()返回true,则hashCode()返回值必须相等;
  • 如果equals()返回false,则hashCode()返回值尽量不要相等。

原理

实现hashCode()方法可以通过Objects.hashCode()辅助方法实现。

我们知道Map是一种键-值(key-value)映射表,可以通过key快速查找对应的value。

以HashMap为例,观察下面的代码:

Map<String, Person> map = new HashMap<>();
map.put("a", new Person("Xiao Ming"));
map.put("b", new Person("Xiao Hong"));
map.put("c", new Person("Xiao Jun"));

map.get("a"); // Person("Xiao Ming")
map.get("x"); // null

HashMap之所以能根据key直接拿到value,原因是它内部通过空间换时间的方法,用一个大数组存储所有value,并根据key直接计算出value应该存储在哪个索引。

如果key的值为"a",计算得到的索引总是1,因此返回valuePerson("Xiao Ming"),如果key的值为"b",计算得到的索引总是5,因此返回valuePerson("Xiao Hong"),这样,就不必遍历整个数组,即可直接读取key对应的value

当我们使用key存取value的时候,就会引出一个问题:

我们放入Mapkey是字符串"a",但是,当我们获取Mapvalue时,传入的变量不一定就是放入的那个key对象。

....

我们经常使用String作为key,因为String已经正确覆写了equals()方法。但如果我们放入的key是一个自己写的类,就必须保证正确覆写了equals()方法。

使用EnumMap

因为HashMap是一种通过对key计算hashCode(),通过空间换时间的方式,直接定位到value所在的内部数组的索引,因此,查找效率非常高。

如果作为key的对象是enum类型,那么,还可以使用Java集合库提供的一种EnumMap,它在内部以一个非常紧凑的数组存储value,并且根据enum类型的key直接定位到内部数组的索引,并不需要计算hashCode(),不但效率最高,而且没有额外的空间浪费。

使用TreeMap

我们已经知道,HashMap是一种以空间换时间的映射表,它的实现原理决定了内部的Key是无序的,即遍历HashMap的Key时,其顺序是不可预测的(但每个Key都会遍历一次且仅遍历一次)。

还有一种Map,它在内部会对Key进行排序,这种Map就是SortedMap。注意到SortedMap是接口,它的实现类是TreeMap

使用Properties

在编写应用程序的时候,经常需要读写配置文件。例如,用户的设置:

# 上次最后打开的文件:
last_open_file=/data/hello.txt
# 自动保存文件的时间间隔:
auto_save_interval=60

配置文件的特点是,它的Key-Value一般都是String-String类型的,因此我们完全可以用Map<String, String>来表示它。

因为配置文件非常常用,所以Java集合库提供了一个Properties来表示一组“配置”。由于历史遗留原因,Properties内部本质上是一个Hashtable,但我们只需要用到Properties自身关于读写配置的接口。

使用Set

我们知道,Map用于存储key-value的映射,对于充当key的对象,是不能重复的,并且,不但需要正确覆写equals()方法,还要正确覆写hashCode()方法。

如果我们只需要存储不重复的key,并不需要存储映射的value,那么就可以使用Set

Set用于存储不重复的元素集合,它主要提供以下几个方法:

  • 将元素添加进Set<E>boolean add(E e)
  • 将元素从Set<E>删除:boolean remove(Object e)
  • 判断是否包含元素:boolean contains(Object e)

我们来看几个简单的例子:

        Set<String> set = new HashSet<>();
        System.out.println(set.add("abc")); // true
        System.out.println(set.add("xyz")); // true
        System.out.println(set.add("xyz")); // false,添加失败,因为元素已存在
        System.out.println(set.contains("xyz")); // true,元素存在
        System.out.println(set.contains("XYZ")); // false,元素不存在
        System.out.println(set.remove("hello")); // false,删除失败,因为元素不存在
        System.out.println(set.size()); // 2,一共两个元素

使用Queue

队列(Queue)是一种经常使用的集合。Queue实际上是实现了一个先进先出(FIFO:First In First Out)的有序表。它和List的区别在于,List可以在任意位置添加和删除元素,而Queue只有两个操作:

  • 把元素添加到队列末尾;
  • 从队列头部取出元素。

## IO

IO是指Input/Output,即输入和输出。以内存为中心:

  • Input指从外部读入数据到内存,例如,把文件从磁盘读取到内存,从网络读取数据到内存等等。
  • Output指把数据从内存输出到外部,例如,把数据从内存写入到文件,把数据从内存输出到网络等等。

为什么要把数据读到内存才能处理这些数据?因为代码是在内存中运行的,数据也必须读到内存,最终的表示方式无非是byte数组,字符串等,都必须存放在内存里。

从Java代码来看,输入实际上就是从外部,例如,硬盘上的某个文件,把内容读到内存,并且以Java提供的某种数据类型表示,例如,byte[]String,这样,后续代码才能处理这些数据。

因为内存有“易失性”的特点,所以必须把处理后的数据以某种方式输出,例如,写入到文件。Output实际上就是把Java表示的数据格式,例如,byte[]String等输出到某个地方。

IO流是一种顺序读写数据的模式,它的特点是单向流动。数据类似自来水一样在水管中流动,所以我们把它称为IO流。

InputStream / OutputStream

IO流以byte(字节)为最小单位,因此也称为_字节流_。例如,我们要从磁盘读入一个文件,包含6个字节,就相当于读入了6个字节的数据:

╔════════════╗
║   Memory   ║
╚════════════╝
       ▲
       │0x48
       │0x65
       │0x6c
       │0x6c
       │0x6f
       │0x21
 ╔═══════════╗
 ║ Hard Disk ║
 ╚═══════════╝

这6个字节是按顺序读入的,所以是输入字节流。

反过来,我们把6个字节从内存写入磁盘文件,就是输出字节流:

╔════════════╗
║   Memory   ║
╚════════════╝
       │0x21
       │0x6f
       │0x6c
       │0x6c
       │0x65
       │0x48
       ▼
 ╔═══════════╗
 ║ Hard Disk ║
 ╚═══════════╝

在Java中,InputStream代表输入字节流,OuputStream代表输出字节流,这是最基本的两种IO流。

Reader / Writer

如果我们需要读写的是字符,并且字符不全是单字节表示的ASCII字符,那么,按照char来读写显然更方便,这种流称为_字符流_。

Java提供了ReaderWriter表示字符流,字符流传输的最小数据单位是char

例如,我们把char[]数组Hi你好这4个字符用Writer字符流写入文件,并且使用UTF-8编码,得到的最终文件内容是8个字节,英文字符Hi各占一个字节,中文字符你好各占3个字节:

0x48
0x69
0xe4bda0
0xe5a5bd

反过来,我们用Reader读取以UTF-8编码的这8个字节,会从Reader中得到Hi你好这4个字符。

因此,ReaderWriter本质上是一个能自动编解码的InputStreamOutputStream

使用Reader,数据源虽然是字节,但我们读入的数据都是char类型的字符,原因是Reader内部把读入的byte做了解码,转换成了char。使用InputStream,我们读入的数据和原始二进制数据一模一样,是byte[]数组,但是我们可以自己把二进制byte[]数组按照某种编码转换为字符串。究竟使用Reader还是InputStream,要取决于具体的使用场景。如果数据源不是文本,就只能使用InputStream,如果数据源是文本,使用Reader更方便一些。WriterOutputStream是类似的。

同步和异步

同步IO是指,读写IO时代码必须等待数据返回后才继续执行后续代码,它的优点是代码编写简单,缺点是CPU执行效率低。

而异步IO是指,读写IO时仅发出请求,然后立刻执行后续代码,它的优点是CPU执行效率高,缺点是代码编写复杂。

Java标准库的包java.io提供了同步IO,而java.nio则是异步IO。上面我们讨论的InputStreamOutputStreamReaderWriter都是同步IO的抽象类,对应的具体实现类,以文件为例,有FileInputStreamFileOutputStreamFileReaderFileWriter

本节我们只讨论Java的同步IO,即输入/输出流的IO模型。

File对象

在计算机系统中,文件是非常重要的存储方式。Java的标准库java.io提供了File对象来操作文件和目录。

要构造一个File对象,需要传入文件路径:

  File f = new File("C:\\Windows\\notepad.exe");
  System.out.println(f);

构造File对象时,既可以传入绝对路径,也可以传入相对路径。绝对路径是以根目录开头的完整路径,例如:

File f = new File("C:\\Windows\\notepad.exe");

注意Windows平台使用\作为路径分隔符,在Java字符串中需要用\\表示一个\。Linux平台使用/作为路径分隔符:

File f = new File("/usr/bin/javac");

传入相对路径时,相对路径前面加上当前目录就是绝对路径:

// 假设当前目录是C:\Docs
File f1 = new File("sub\\javac"); // 绝对路径是C:\Docs\sub\javac
File f3 = new File(".\\sub\\javac"); // 绝对路径是C:\Docs\sub\javac
File f3 = new File("..\\sub\\javac"); // 绝对路径是C:\sub\javac

可以用.表示当前目录,..表示上级目录。

File对象有3种形式表示的路径,一种是getPath(),返回构造方法传入的路径,一种是getAbsolutePath(),返回绝对路径,一种是getCanonicalPath,它和绝对路径类似,但是返回的是规范路径。


秋収冬藏
37 声望0 粉丝