SQL就是访问和处理关系数据库的计算机标准语言。也就是说,无论用什么编程语言(Java、Python、C++……)编写程序,只要涉及到操作关系数据库,比如,一个电商网站需要把用户和商品信息存入数据库,或者一个手机游戏需要把用户的道具、通关信息存入数据库,都必须通过SQL来完成。
NoSQL
你可能还听说过NoSQL数据库,也就是非SQL的数据库,包括MongoDB、Cassandra、Dynamo等等,它们都不是关系数据库。有很多人鼓吹现代Web程序已经无需关系数据库了,只需要使用NoSQL就可以。但事实上,SQL数据库从始至终从未被取代过。
关系数据库概述
数据库作为一种专门管理数据的软件就出现了。应用程序不需要自己管理数据,而是通过数据库软件提供的接口来读写数据。至于数据本身如何存储到文件,那是数据库软件的事情,应用程序自己并不关心:
┌──────────────┐
│ application │
└──────────────┘
▲│
││
read││write
││
│▼
┌──────────────┐
│ database │
└──────────────┘
这样一来,编写应用程序的时候,数据读写的功能就被大大地简化了。
数据模型
数据库按照数据结构来组织、存储和管理数据,实际上,数据库一共有三种模型:
- 层次模型
- 网状模型
- 关系模型
层次模型就是以“上下级”的层次关系来组织数据的一种方式,层次模型的数据结构看起来就像一颗树:
┌─────┐
│ │
└─────┘
│
┌───────┴───────┐
│ │
┌─────┐ ┌─────┐
│ │ │ │
└─────┘ └─────┘
│ │
┌───┴───┐ ┌───┴───┐
│ │ │ │
┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐
│ │ │ │ │ │ │ │
└─────┘ └─────┘ └─────┘ └─────┘
网状模型把每个数据节点和其他很多节点都连接起来,它的数据结构看起来就像很多城市之间的路网:
┌─────┐ ┌─────┐
┌─│ │──────│ │──┐
│ └─────┘ └─────┘ │
│ │ │ │
│ └──────┬─────┘ │
│ │ │
┌─────┐ ┌─────┐ ┌─────┐
│ │─────│ │─────│ │
└─────┘ └─────┘ └─────┘
│ │ │
│ ┌─────┴─────┐ │
│ │ │ │
│ ┌─────┐ ┌─────┐ │
└──│ │─────│ │──┘
└─────┘ └─────┘
关系模型把数据看作是一个二维表格,任何数据都可以通过行号+列号来唯一确定,它的数据模型看起来就是一个Excel表:
┌─────┬─────┬─────┬─────┬─────┐
│ │ │ │ │ │
├─────┼─────┼─────┼─────┼─────┤
│ │ │ │ │ │
├─────┼─────┼─────┼─────┼─────┤
│ │ │ │ │ │
├─────┼─────┼─────┼─────┼─────┤
│ │ │ │ │ │
└─────┴─────┴─────┴─────┴─────┘
随着时间的推移和市场竞争,最终,基于关系模型的关系数据库获得了绝对市场份额。
为什么关系数据库获得了最广泛的应用?
因为相比层次模型和网状模型,关系模型理解和使用起来最简单。
基于数学理论的关系模型虽然讲起来挺复杂,但是,基于日常生活的关系模型却十分容易理解。我们以学校班级为例,一个班级的学生就可以用一个表格存起来,
其中,班级ID对应着另一个班级表
通过给定一个班级名称,可以查到一条班级记录,根据班级ID,又可以查到多条学生记录,这样,二维表之间就通过ID映射建立了“一对多”关系。
数据类型
对于一个关系表,除了定义每一列的名称外,还需要定义每一列的数据类型。关系数据库支持的标准数据类型包括数值、字符串、时间等
选择数据类型的时候,要根据业务规则选择合适的类型。通常来说,BIGINT
能满足整数存储的需求,VARCHAR(N)
能满足字符串存储的需求,这两种类型是使用最广泛的。
SQL
什么是SQL?SQL是结构化查询语言的缩写,用来访问和操作数据库系统。SQL语句既可以查询数据库中的数据,也可以添加、更新和删除数据库中的数据,还可以对数据库进行管理和维护操作。不同的数据库,都支持SQL,这样,我们通过学习SQL这一种语言,就可以操作各种不同的数据库。
虽然SQL已经被ANSI组织定义为标准,不幸地是,各个不同的数据库对标准的SQL支持不太一致。并且,大部分数据库都在标准的SQL上做了扩展。也就是说,如果只使用标准SQL,理论上所有数据库都可以支持,但如果使用某个特定数据库的扩展SQL,换一个数据库就不能执行了。例如,Oracle把自己扩展的SQL称为PL/SQL
,Microsoft把自己扩展的SQL称为T-SQL
。
现实情况是,如果我们只使用标准SQL的核心功能,那么所有数据库通常都可以执行。不常用的SQL功能,不同的数据库支持的程度都不一样。而各个数据库支持的各自扩展的功能,通常我们把它们称之为“方言”。
总的来说,SQL语言定义了这么几种操作数据库的能力:
DDL:Data Definition Language
DDL允许用户定义数据,也就是创建表、删除表、修改表结构这些操作。通常,DDL由数据库管理员执行。
DML:Data Manipulation Language
DML为用户提供添加、删除、更新数据的能力,这些是应用程序对数据库的日常操作。
DQL:Data Query Language
DQL允许用户查询数据,这也是通常最频繁的数据库日常操作。
语法特点
SQL语言关键字不区分大小写!!!但是,针对不同的数据库,对于表名和列名,有的数据库区分大小写,有的数据库不区分大小写。同一个数据库,有的在Linux上区分大小写,有的在Windows上不区分大小写。
所以,本教程约定:SQL关键字总是大写,以示突出,表名和列名均使用小写。
安装MySQL
MySQL是目前应用最广泛的开源关系数据库。MySQL最早是由瑞典的MySQL AB公司开发,该公司在2008年被SUN公司收购,紧接着,SUN公司在2009年被Oracle公司收购,所以MySQL最终就变成了Oracle旗下的产品。
和其他关系数据库有所不同的是,MySQL本身实际上只是一个SQL接口,它的内部还包含了多种数据引擎,常用的包括:
- InnoDB:由Innobase Oy公司开发的一款支持事务的数据库引擎,2006年被Oracle收购;
- MyISAM:MySQL早期集成的默认数据库引擎,不支持事务。
MySQL接口和数据库引擎的关系就好比某某浏览器和浏览器引擎(IE引擎或Webkit引擎)的关系。对用户而言,切换浏览器引擎不影响浏览器界面,切换MySQL引擎不影响自己写的应用程序使用MySQL的接口。
使用MySQL时,不同的表还可以使用不同的数据库引擎。如果你不知道应该采用哪种引擎,记住总是选择_InnoDB_就好了。
安装MySQL
要在Windows或Mac上安装MySQL,首先从MySQL官方网站下载最新的MySQL Community Server版本:
https://dev.mysql.com/downloads/mysql/
选择对应的操作系统版本,下载安装即可。在安装过程中,MySQL会自动创建一个root
用户,并提示输入root
口令。
要在Linux上安装MySQL,可以使用发行版的包管理器。例如,Debian和Ubuntu用户可以简单地通过命令apt-get install mysql-server
安装最新的MySQL版本。
运行MySQL
MySQL安装后会自动在后台运行。为了验证MySQL安装是否正确,我们需要通过mysql
这个命令行程序来连接MySQL服务器。
在命令提示符下输入mysql -u root -p
,然后输入口令,如果一切正确,就会连接到MySQL服务器,同时提示符变为mysql>
。
输入exit
退出MySQL命令行。注意,MySQL服务器仍在后台运行。
关系模型
我们已经知道,关系数据库是建立在关系模型上的。而关系模型本质上就是若干个存储数据的二维表,可以把它们看作很多Excel表。
表的每一行称为记录(Record),记录是一个逻辑意义上的数据。
表的每一列称为字段(Column),同一个表的每一行记录都拥有相同的若干字段。
字段定义了数据类型(整型、浮点型、字符串、日期等),以及是否允许为NULL
。注意NULL
表示字段数据不存在。一个整型字段如果为NULL
不表示它的值为0
,同样的,一个字符串型字段为NULL
也不表示它的值为空串''
。
通常情况下,字段应该避免允许为NULL。不允许为NULL可以简化查询条件,加快查询速度,也利于应用程序读取数据后无需判断是否为NULL。
和Excel表有所不同的是,关系数据库的表和表之间需要建立“一对多”,“多对一”和“一对一”的关系,这样才能够按照应用程序的逻辑来组织和存储数据。
一个班级表,每一行对应着一个班级,而一个班级对应着多个学生,所以班级表和学生表的关系就是“一对多”反过来,如果我们先在学生表中定位了一行记录,例如ID=1
的小明,要确定他的班级,只需要根据他的“班级ID”对应的值201
找到班级表中ID=201
的记录,即二年级一班。所以,学生表和班级表是“多对一”的关系。班级表和教师表就是“一对一”关系。
在关系数据库中,关系是通过_主键_和_外键_来维护的。我们在后面会分别深入讲解。
主键
每一条记录都包含若干定义好的字段。同一个表的所有记录都有相同的字段定义。
对于关系表,有个很重要的约束,就是任意两条记录不能重复。不能重复不是指两条记录不完全相同,而是指能够通过某个字段唯一区分出不同的记录,这个字段被称为_主键_。
例如,假设我们把name
字段作为主键,那么通过名字小明
或小红
就能唯一确定一条记录。但是,这么设定,就没法存储同名的同学了,因为插入相同主键的两条记录是不被允许的。
对主键的要求,最关键的一点是:记录一旦插入到表中,主键最好不要再修改,因为主键是用来唯一定位记录的,修改了主键,会造成一系列的影响。
由于主键的作用十分重要,如何选取主键会对业务开发产生重要影响。如果我们以学生的身份证号作为主键,似乎能唯一定位记录。然而,身份证号也是一种业务场景,如果身份证号升位了,或者需要变更,作为主键,不得不修改的时候,就会对业务产生严重影响。
所以,选取主键的一个基本原则是:不使用任何业务相关的字段作为主键。
因此,身份证号、手机号、邮箱地址这些看上去可以唯一的字段,均_不可_用作主键。
作为主键最好是完全业务无关的字段,我们一般把这个字段命名为id
。常见的可作为id
字段的类型有:
- 自增整数类型:数据库会在插入数据时自动为每一条记录分配一个自增整数,这样我们就完全不用担心主键重复,也不用自己预先生成主键;
- 全局唯一GUID类型:使用一种全局唯一的字符串作为主键,类似
8f55d96b-8acc-4636-8cb8-76bf8abc2f57
。GUID算法通过网卡MAC地址、时间戳和随机数保证任意计算机在任意时间生成的字符串都是不同的,大部分编程语言都内置了GUID算法,可以自己预算出主键。
对于大部分应用来说,通常自增类型的主键就能满足需求。我们在students
表中定义的主键也是BIGINT NOT NULL AUTO_INCREMENT
类型
联合主键
关系数据库实际上还允许通过多个字段唯一标识记录,即两个或更多的字段都设置为主键,这种主键被称为联合主键。
对于联合主键,允许一列有重复,只要不是所有主键列都重复即可
没有必要的情况下,我们尽量不使用联合主键,因为它给关系表带来了复杂度的上升。
外键
我们如何确定students
表的一条记录,例如,id=1
的小明,属于哪个班级呢?
由于一个班级可以有多个学生,在关系模型中,这两个表的关系可以称为“一对多”,即一个classes
的记录可以对应多个students
表的记录。
为了表达这种一对多的关系,我们需要在students
表中加入一列class_id
,让它的值与classes
表的某条记录相对应
这样,我们就可以根据class_id
这个列直接定位出一个students
表的记录应该对应到classes
的哪条记录。
例如:
- 小明的
class_id
是1
,因此,对应的classes
表的记录是id=1
的一班; - 小红的
class_id
是1
,因此,对应的classes
表的记录是id=1
的一班; - 小白的
class_id
是2
,因此,对应的classes
表的记录是id=2
的二班。
在students
表中,通过class_id
的字段,可以把数据与另一张表关联起来,这种列称为外键
。
外键并不是通过列名实现的,而是通过定义外键约束实现的:
ALTER TABLE students
ADD CONSTRAINT fk_class_id
FOREIGN KEY (class_id)
REFERENCES classes (id);
其中,外键约束的名称fk_class_id
可以任意,FOREIGN KEY (class_id)
指定了class_id
作为外键,REFERENCES classes (id)
指定了这个外键将关联到classes
表的id
列(即classes
表的主键)。
通过定义外键约束,关系数据库可以保证无法插入无效的数据。即如果classes
表不存在id=99
的记录,students
表就无法插入class_id=99
的记录。
由于外键约束会降低数据库的性能,大部分互联网应用程序为了追求速度,并不设置外键约束,而是仅靠应用程序自身来保证逻辑的正确性。这种情况下,class_id
仅仅是一个普通的列,只是它起到了外键的作用而已。
要删除一个外键约束,也是通过ALTER TABLE
实现的:
ALTER TABLE students
DROP FOREIGN KEY fk_class_id;
注意:删除外键约束并没有删除外键这一列。删除列是通过DROP COLUMN ...
实现的。
多对多
通过一个表的外键关联到另一个表,我们可以定义出一对多关系。有些时候,还需要定义“多对多”关系。例如,一个老师可以对应多个班级,一个班级也可以对应多个老师,因此,班级表和老师表存在多对多关系。
多对多关系实际上是通过两个一对多关系实现的,即通过一个中间表,关联两个一对多关系,就形成了多对多关系
通过中间表teacher_class
可知teachers
到classes
的关系:
id=1
的张老师对应id=1,2
的一班和二班;id=2
的王老师对应id=1,2
的一班和二班;id=3
的李老师对应id=1
的一班;id=4
的赵老师对应id=2
的二班。
同理可知classes
到teachers
的关系:
id=1
的一班对应id=1,2,3
的张老师、王老师和李老师;id=2
的二班对应id=1,2,4
的张老师、王老师和赵老师;
因此,通过中间表,我们就定义了一个“多对多”关系。
一对一
一对一关系是指,一个表的记录对应到另一个表的唯一一个记录。
例如,students
表的每个学生可以有自己的联系方式,如果把联系方式存入另一个表contacts
,我们就可以得到一个“一对一”关系
既然是一对一关系,那为啥不给students
表增加一个mobile
列,这样就能合二为一了?
如果业务允许,完全可以把两个表合为一个表。但是,有些时候,如果某个学生没有手机号,那么,contacts
表就不存在对应的记录。实际上,一对一关系准确地说,是contacts
表一对一对应students
表。
还有一些应用会把一个大表拆成两个一对一的表,目的是把经常读取和不经常读取的字段分开,以获得更高的性能。例如,把一个大的用户表分拆为用户基本信息表user_info
和用户详细信息表user_profiles
,大部分时候,只需要查询user_info
表,并不需要查询user_profiles
表,这样就提高了查询速度。
小结
关系数据库通过外键可以实现一对多、多对多和一对一的关系。外键既可以通过数据库来约束,也可以不设置约束,仅依靠应用程序的逻辑来保证。
索引
在关系数据库中,如果有上万甚至上亿条记录,在查找记录的时候,想要获得非常快的速度,就需要使用索引。
索引是关系数据库中对某一列或多个列的值进行预排序的数据结构。通过使用索引,可以让数据库系统不必扫描整个表,而是直接定位到符合条件的记录,这样就大大加快了查询速度。
如果要经常根据score
列进行查询,就可以对score
列创建索引:
ALTER TABLE students
ADD INDEX idx_score (score);
使用ADD INDEX idx_score (score)
就创建了一个名称为idx_score
,使用列score
的索引。索引名称是任意的,索引如果有多列,可以在括号里依次写上,例如:
ALTER TABLE students
ADD INDEX idx_name_score (name, score);
索引的效率取决于索引列的值是否散列,即该列的值如果越互不相同,那么索引效率越高。反过来,如果记录的列存在大量相同的值,例如gender
列,大约一半的记录值是M
,另一半是F
,因此,对该列创建索引就没有意义。
可以对一张表创建多个索引。索引的优点是提高了查询效率,缺点是在插入、更新和删除记录时,需要同时修改索引,因此,索引越多,插入、更新和删除记录的速度就越慢。
对于主键,关系数据库会自动对其创建主键索引。使用主键索引的效率是最高的,因为主键会保证绝对唯一。
唯一索引
在设计关系数据表的时候,看上去唯一的列,例如身份证号、邮箱地址等,因为他们具有业务含义,因此不宜作为主键。
但是,这些列根据业务要求,又具有唯一性约束:即不能出现两条记录存储了同一个身份证号。这个时候,就可以给该列添加一个唯一索引。例如,我们假设students
表的name
不能重复:
ALTER TABLE students
ADD UNIQUE INDEX uni_name (name);
通过UNIQUE
关键字我们就添加了一个唯一索引。
也可以只对某一列添加一个唯一约束而不创建唯一索引:
ALTER TABLE students
ADD CONSTRAINT uni_name UNIQUE (name);
这种情况下,name
列没有索引,但仍然具有唯一性保证。
无论是否创建索引,对于用户和应用程序来说,使用关系数据库不会有任何区别。这里的意思是说,当我们在数据库中查询时,如果有相应的索引可用,数据库系统就会自动使用索引来提高查询效率,如果没有索引,查询也能正常执行,只是速度会变慢。因此,索引可以在使用数据库的过程中逐步优化。
小结
通过对数据库表创建索引,可以提高查询速度。
通过创建唯一索引,可以保证某一列的值具有唯一性。
数据库索引对于用户和应用程序来说都是透明的。
查询数据
在关系数据库中,最常用的操作就是查询。
基本查询
要查询数据库表的数据,我们使用如下的SQL语句:
SELECT * FROM students;
SELECT
是关键字,表示将要执行一个查询,*
表示“所有列”,FROM
表示将要从哪个表查询,本例中是students
表。
该SQL将查询出students
表的所有数据。注意:查询结果也是一个二维表,它包含列名和每一行的数据。
小结
使用SELECT查询的基本语句SELECT * FROM <表名>
可以查询一个表的所有行和所有列的数据。
SELECT查询的结果是一个二维表。
条件查询
使用SELECT * FROM <表名>
可以查询到一张表的所有记录。但是,很多时候,我们并不希望获得所有记录,而是根据条件选择性地获取指定条件的记录,例如,查询分数在80分以上的学生记录。在一张表有数百万记录的情况下,获取所有记录不仅费时,还费内存和网络带宽。
SELECT语句可以通过WHERE
条件来设定查询条件,查询结果是满足查询条件的记录。例如,要指定条件“分数在80分或以上的学生”,写成WHERE
条件就是:
SELECT * FROM students WHERE score >= 80
其中,WHERE
关键字后面的score >= 80
就是条件。score
是列名,该列存储了学生的成绩,因此,score >= 80
就筛选出了指定条件的记录
因此,条件查询的语法就是:
SELECT * FROM <表名> WHERE <条件表达式>
条件表达式可以用<条件1> AND <条件2>
表达满足条件1并且满足条件2。例如,符合条件“分数在80分或以上”,并且还符合条件“男生”,把这两个条件写出来:
- 条件1:根据score列的数据判断:
score >= 80
; - 条件2:根据gender列的数据判断:
gender = 'M'
,注意gender
列存储的是字符串,需要用单引号括起来。
就可以写出WHERE
条件:score >= 80 AND gender = 'M'
:
第二种条件是<条件1> OR <条件2>
,表示满足条件1或者满足条件2。例如,把上述AND
查询的两个条件改为OR
,查询结果就是“分数在80分或以上”或者“男生”,满足任意之一的条件即选出该记录:
SELECT * FROM students WHERE score >= 80 OR gender = 'M';
第三种条件是NOT <条件>
,表示“不符合该条件”的记录。例如,写一个“不是2班的学生”这个条件,可以先写出“是2班的学生”:class_id = 2
,再加上NOT
:NOT class_id = 2
:
SELECT * FROM students WHERE NOT class_id = 2;
上述NOT
条件NOT class_id = 2
其实等价于class_id <> 2
,因此,NOT
查询不是很常用。
要组合三个或者更多的条件,就需要用小括号()
表示如何进行条件运算。例如,编写一个复杂的条件:分数在80以下或者90以上,并且是男生:
SELECT * FROM students WHERE (score < 80 OR score > 90) AND gender = 'M';
如果不加括号,条件运算按照NOT
、AND
、OR
的优先级进行,即NOT
优先级最高,其次是AND
,最后是OR
。加上括号可以改变优先级。
投影查询
使用SELECT * FROM <表名> WHERE <条件>
可以选出表中的若干条记录。我们注意到返回的二维表结构和原表是相同的,即结果集的所有列与原表的所有列都一一对应。
如果我们只希望返回某些列的数据,而不是所有列的数据,我们可以用SELECT 列1, 列2, 列3 FROM ...
,让结果集仅包含指定列。这种操作称为投影查询。
例如,从students
表中返回id
、score
和name
这三列:
SELECT id, score, name FROM students;
这样返回的结果集就只包含了我们指定的列,并且,结果集的列的顺序和原表可以不一样。
使用SELECT 列1, 列2, 列3 FROM ...
时,还可以给每一列起个别名,这样,结果集的列名就可以与原表的列名不同。它的语法是SELECT 列1 别名1, 列2 别名2, 列3 别名3 FROM ...
。
例如,以下SELECT
语句将列名score
重命名为points
,而id
和name
列名保持不变:
SELECT id, score points, name FROM students;
排序
排序
我们使用SELECT查询时,细心的读者可能注意到,查询结果集通常是按照id
排序的,也就是根据主键排序。这也是大部分数据库的做法。如果我们要根据其他条件排序怎么办?可以加上ORDER BY
子句。例如按照成绩从低到高进行排序:
SELECT id, name, gender, score FROM students ORDER BY score;
如果要反过来,按照成绩从高到底排序,我们可以加上DESC
表示“倒序”:
SELECT id, name, gender, score FROM students ORDER BY score DESC;
如果score
列有相同的数据,要进一步排序,可以继续添加列名。例如,使用ORDER BY score DESC, gender
表示先按score
列倒序,如果有相同分数的,再按gender
列排序:
SELECT id, name, gender, score FROM students ORDER BY score DESC, gender;
默认的排序规则是ASC
:“升序”,即从小到大。ASC
可以省略,即ORDER BY score ASC
和ORDER BY score
效果一样。
如果有WHERE
子句,那么ORDER BY
子句要放到WHERE
子句后面。例如,查询一班的学生成绩,并按照倒序排序:
SELECT id, name, gender, score
FROM students
WHERE class_id = 1
ORDER BY score DESC;
分页查询
分页
使用SELECT查询时,如果结果集数据量很大,比如几万行数据,放在一个页面显示的话数据量太大,不如分页显示,每次显示100条。
要实现分页功能,实际上就是从结果集中显示第1~100条记录作为第1页,显示第101~200条记录作为第2页,以此类推。
因此,分页实际上就是从结果集中“截取”出第M~N条记录。这个查询可以通过LIMIT <M> OFFSET <N>
子句实现。我们先把所有学生按照成绩从高到低进行排序,把结果集分页,每页3条记录。要获取第1页的记录,可以使用LIMIT 3 OFFSET 0
:
SELECT id, name, gender, score
FROM students
ORDER BY score DESC
LIMIT 3 OFFSET 0;
上述查询LIMIT 3 OFFSET 0
表示,对结果集从0号记录开始,最多取3条。注意SQL记录集的索引从0开始。
如果要查询第2页,那么我们只需要“跳过”头3条记录,也就是对结果集从3号记录开始查询,把OFFSET
设定为3。
可见,分页查询的关键在于,首先要确定每页需要显示的结果数量pageSize
(这里是3),然后根据当前页的索引pageIndex
(从1开始),确定LIMIT
和OFFSET
应该设定的值:
LIMIT
总是设定为pageSize
;OFFSET
计算公式为pageSize * (pageIndex - 1)
。
这样就能正确查询出第N页的记录集。
OFFSET
超过了查询的最大数量并不会报错,而是得到一个空的结果集。
注意
OFFSET
是可选的,如果只写LIMIT 15
,那么相当于LIMIT 15 OFFSET 0
。
在MySQL中,LIMIT 15 OFFSET 30
还可以简写成LIMIT 30, 15
。
使用LIMIT <M> OFFSET <N>
分页时,随着N
越来越大,查询效率也会越来越低。
聚合查询
如果我们要统计一张表的数据量,例如,想查询students
表一共有多少条记录,难道必须用SELECT * FROM students
查出来然后再数一数有多少行吗?
这个方法当然可以,但是比较弱智。对于统计总数、平均数这类计算,SQL提供了专门的聚合函数,使用聚合函数进行查询,就是聚合查询,它可以快速获得结果。
仍然以查询students
表一共有多少条记录为例,我们可以使用SQL内置的COUNT()
函数查询:
SELECT COUNT(*) FROM students;
COUNT(*)
表示查询所有列的行数,要注意聚合的计算结果虽然是一个数字,但查询的结果仍然是一个二维表,只是这个二维表只有一行一列,并且列名是COUNT(*)
。
通常,使用聚合查询时,我们应该给列名设置一个别名,便于处理结果:
SELECT COUNT(*) num FROM students;
COUNT(*)
和COUNT(id)
实际上是一样的效果。另外注意,聚合查询同样可以使用WHERE
条件,因此我们可以方便地统计出有多少男生、多少女生、多少80分以上的学生等:
SELECT COUNT(*) boys FROM students WHERE gender = 'M';
除了COUNT()
函数外,SQL还提供了如下聚合函数:.....
注意,MAX()
和MIN()
函数并不限于数值类型。如果是字符类型,MAX()
和MIN()
会返回排序最后和排序最前的字符。
要统计男生的平均成绩,我们用下面的聚合查询:
SELECT AVG(score) average FROM students WHERE gender = 'M';
要特别注意:如果聚合查询的WHERE
条件没有匹配到任何行,COUNT()
会返回0,而SUM()
、AVG()
、MAX()
和MIN()
会返回NULL
分组
如果我们要统计一班的学生数量,我们知道,可以用SELECT COUNT(*) num FROM students WHERE class_id = 1;
。如果要继续统计二班、三班的学生数量,难道必须不断修改WHERE
条件来执行SELECT
语句吗?
对于聚合查询,SQL还提供了“分组聚合”的功能。我们观察下面的聚合查询:
SELECT COUNT(*) num FROM students GROUP BY class_id;
执行这个查询,COUNT()
的结果不再是一个,而是3个,这是因为,GROUP BY
子句指定了按class_id
分组,因此,执行该SELECT
语句时,会把class_id
相同的列先分组,再分别计算,因此,得到了3行结果。
但是这3行结果分别是哪三个班级的,不好看出来,所以我们可以把class_id
列也放入结果集中:
SELECT class_id, COUNT(*) num FROM students GROUP BY class_id;
多表查询
SELECT查询不但可以从一张表查询数据,还可以从多张表同时查询数据。查询多张表的语法是:SELECT * FROM <表1> <表2>
。
例如,同时从students
表和classes
表的“乘积”,即查询数据,可以这么写:
SELECT * FROM students, classes;
这种一次查询两个表的数据,查询的结果也是一个二维表,它是students
表和classes
表的“乘积”,即students
表的每一行与classes
表的每一行都两两拼在一起返回。结果集的列数是students
表和classes
表的列数之和,行数是students
表和classes
表的行数之积。
这种多表查询又称笛卡尔查询,使用笛卡尔查询时要非常小心,由于结果集是目标表的行数乘积,对两个各自有100行记录的表进行笛卡尔查询将返回1万条记录,对两个各自有1万行记录的表进行笛卡尔查询将返回1亿条记录。
你可能还注意到了,上述查询的结果集有两列id
和两列name
,两列id
是因为其中一列是students
表的id
,而另一列是classes
表的id
,但是在结果集中,不好区分。两列name
同理
要解决这个问题,我们仍然可以利用投影查询的“设置列的别名”来给两个表各自的id
和name
列起别名:
SELECT
students.id sid,
students.name,
students.gender,
students.score,
classes.id cid,
classes.name cname
FROM students, classes;
注意,多表查询时,要使用表名.列名
这样的方式来引用列和设置别名,这样就避免了结果集的列名重复问题。但是,用表名.列名
这种方式列举两个表的所有列实在是很麻烦,所以SQL还允许给表设置一个别名,让我们在投影查询中引用起来稍微简洁一点:
SELECT
s.id sid,
s.name,
s.gender,
s.score,
c.id cid,
c.name cname
FROM students s, classes c;
注意到FROM
子句给表设置别名的语法是FROM <表名1> <别名1>, <表名2> <别名2>
。这样我们用别名s
和c
分别表示students
表和classes
表。
连接查询
连接查询是另一种类型的多表查询。连接查询对多个表进行JOIN运算,简单地说,就是先确定一个主表作为结果集,然后,把其他表的行有选择性地“连接”在主表结果集上。
例如,我们想要选出students
表的所有学生信息,可以用一条简单的SELECT语句完成:
SELECT s.id, s.name, s.class_id, s.gender, s.score FROM students s;
但是,假设我们希望结果集同时包含所在班级的名称,上面的结果集只有class_id
列,缺少对应班级的name
列。
现在问题来了,存放班级名称的name
列存储在classes
表中,只有根据students
表的class_id
,找到classes
表对应的行,再取出name
列,就可以获得班级名称。
这时,连接查询就派上了用场。我们先使用最常用的一种内连接——INNER JOIN来实现:
SELECT s.id, s.name, s.class_id, c.name class_name, s.gender, s.score
FROM students s
INNER JOIN classes c
ON s.class_id = c.id;
id name class_id class_name gender score
1 小明 1 一班 M 90
注意INNER JOIN查询的写法是:
- 先确定主表,仍然使用
FROM <表1>
的语法; - 再确定需要连接的表,使用
INNER JOIN <表2>
的语法; - 然后确定连接条件,使用
ON <条件...>
,这里的条件是s.class_id = c.id
,表示students
表的class_id
列与classes
表的id
列相同的行需要连接; - 可选:加上
WHERE
子句、ORDER BY
等子句。
使用别名不是必须的,但可以更好地简化查询语句。
那什么是内连接(INNER JOIN)呢?先别着急,有内连接(INNER JOIN)就有外连接(OUTER JOIN)。我们把内连接查询改成外连接查询,看看效果:
SELECT s.id, s.name, s.class_id, c.name class_name, s.gender, s.score
FROM students s
RIGHT OUTER JOIN classes c
ON s.class_id = c.id;
执行上述RIGHT OUTER JOIN可以看到,和INNER JOIN相比,RIGHT OUTER JOIN多了一行,多出来的一行是“四班”,但是,学生相关的列如name
、gender
、score
都为NULL
。
这也容易理解,因为根据ON
条件s.class_id = c.id
,classes
表的id=4的行正是“四班”,但是,students
表中并不存在class_id=4的行。
有RIGHT OUTER JOIN,就有LEFT OUTER JOIN,以及FULL OUTER JOIN。它们的区别是:
INNER JOIN只返回同时存在于两张表的行数据,由于students
表的class_id
包含1,2,3,classes
表的id
包含1,2,3,4,所以,INNER JOIN根据条件s.class_id = c.id
返回的结果集仅包含1,2,3。
RIGHT OUTER JOIN返回右表都存在的行。如果某一行仅在右表存在,那么结果集就会以NULL
填充剩下的字段。
LEFT OUTER JOIN则返回左表都存在的行。如果我们给students表增加一行,并添加class_id=5,由于classes表并不存在id=5的行,所以,LEFT OUTER JOIN的结果会增加一行,对应的class_name
是NULL
。
小结
JOIN查询需要先确定主表,然后把另一个表的数据“附加”到结果集上;
INNER JOIN是最常用的一种JOIN查询,它的语法是SELECT ... FROM <表1> INNER JOIN <表2> ON <条件...>
;
JOIN查询仍然可以使用WHERE
条件和ORDER BY
排序。
修改数据
关系数据库的基本操作就是增删改查,即CRUD:Create、Retrieve、Update、Delete。其中,对于查询,我们已经详细讲述了SELECT
语句的详细用法。
而对于增、删、改,对应的SQL语句分别是:
- INSERT:插入新记录;
- UPDATE:更新已有记录;
- DELETE:删除已有记录。
我们将分别讨论这三种修改数据的语句的使用方法。
INSERT
当我们需要向数据库表中插入一条新记录时,就必须使用INSERT
语句。
INSERT
语句的基本语法是:
INSERT INTO <表名> (字段1, 字段2, ...) VALUES (值1, 值2, ...);
例如,我们向students
表插入一条新记录,先列举出需要插入的字段名称,然后在VALUES
子句中依次写出对应字段的值:
INSERT INTO students (class_id, name, gender, score) VALUES (2, '大牛', 'M', 80);
-- 查询并观察结果:
SELECT * FROM students;
注意到我们并没有列出id
字段,也没有列出id
字段对应的值,这是因为id
字段是一个自增主键,它的值可以由数据库自己推算出来。此外,如果一个字段有默认值,那么在INSERT
语句中也可以不出现。
要注意,字段顺序不必和数据库表的字段顺序一致,但值的顺序必须和字段顺序一致。也就是说,可以写INSERT INTO students (score, gender, name, class_id) ...
,但是对应的VALUES
就得变成(80, 'M', '大牛', 2)
。
还可以一次性添加多条记录,只需要在VALUES
子句中指定多个记录值,每个记录是由(...)
包含的一组值:
INSERT INTO students (class_id, name, gender, score) VALUES
(1, '大宝', 'M', 87),
(2, '二宝', 'M', 81);
SELECT * FROM students;
UPDATE
如果要更新数据库表中的记录,我们就必须使用UPDATE
语句。
UPDATE
语句的基本语法是:
UPDATE <表名> SET 字段1=值1, 字段2=值2, ... WHERE ...;
例如,我们想更新students
表id=1
的记录的name
和score
这两个字段,先写出UPDATE students SET name='大牛', score=66
,然后在WHERE
子句中写出需要更新的行的筛选条件id=1
:
UPDATE students SET name='大牛', score=66 WHERE id=1;
-- 查询并观察结果:
SELECT * FROM students WHERE id=1;
注意到UPDATE
语句的WHERE
条件和SELECT
语句的WHERE
条件其实是一样的,因此完全可以一次更新多条记录:
UPDATE students SET name='小牛', score=77 WHERE id>=5 AND id<=7;
-- 查询并观察结果:
SELECT * FROM students;
在UPDATE
语句中,更新字段时可以使用表达式。例如,把所有80分以下的同学的成绩加10分:
UPDATE students SET score=score+10 WHERE score<80;
-- 查询并观察结果:
SELECT * FROM students;
DELETE
如果要删除数据库表中的记录,我们可以使用DELETE
语句。
DELETE
语句的基本语法是:
DELETE FROM <表名> WHERE ...;
例如,我们想删除students
表中id=1
的记录,就需要这么写:
DELETE FROM students WHERE id=1;
-- 查询并观察结果:
SELECT * FROM students;
注意到DELETE
语句的WHERE
条件也是用来筛选需要删除的行,因此和UPDATE
类似,DELETE
语句也可以一次删除多条记录:
DELETE FROM students WHERE id>=5 AND id<=7;
-- 查询并观察结果:
SELECT * FROM students;
如果WHERE
条件没有匹配到任何记录,DELETE
语句不会报错,也不会有任何记录被删除。例如:
DELETE FROM students WHERE id=999;
-- 查询并观察结果:
SELECT * FROM students;
最后,要特别小心的是,和UPDATE
类似,不带WHERE
条件的DELETE
语句会删除整个表的数据:
DELETE FROM students;
这时,整个表的所有记录都会被删除。所以,在执行DELETE
语句时也要非常小心,最好先用SELECT
语句来测试WHERE
条件是否筛选出了期望的记录集,然后再用DELETE
删除。
MySQL
管理MySQL
要管理MySQL,可以使用可视化图形界面MySQL Workbench。
MySQL Workbench可以用可视化的方式查询、创建和修改数据库表,但是,归根到底,MySQL Workbench是一个图形客户端,它对MySQL的操作仍然是发送SQL语句并执行。因此,本质上,MySQL Workbench和MySQL Client命令行都是客户端,和MySQL交互,唯一的接口就是SQL。
因此,MySQL提供了大量的SQL语句用于管理。虽然可以使用MySQL Workbench图形界面来直接管理MySQL,但是,很多时候,通过SSH远程连接时,只能使用SQL命令,所以,了解并掌握常用的SQL管理操作是必须的。
数据库
在一个运行MySQL的服务器上,实际上可以创建多个数据库(Database)。要列出所有数据库,使用命令:
mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| shici |
| sys |
| test |
| school |
+--------------------+
其中,information_schema
、mysql
、performance_schema
和sys
是系统库,不要去改动它们。其他的是用户创建的数据库。
要创建一个新数据库,使用命令:
mysql> CREATE DATABASE test;
Query OK, 1 row affected (0.01 sec)
要删除一个数据库,使用命令:
mysql> DROP DATABASE test;
Query OK, 0 rows affected (0.01 sec)
注意:删除一个数据库将导致该数据库的所有表全部被删除。
对一个数据库进行操作时,要首先将其切换为当前数据库:
mysql> USE test;
Database changed
表
列出当前数据库的所有表,使用命令:
mysql> SHOW TABLES;
+---------------------+
| Tables_in_test |
+---------------------+
| classes |
| statistics |
| students |
| students_of_class1 |
+---------------------+
要查看一个表的结构,使用命令:
mysql> DESC students;
+----------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------+--------------+------+-----+---------+----------------+
| id | bigint(20) | NO | PRI | NULL | auto_increment |
| class_id | bigint(20) | NO | | NULL | |
| name | varchar(100) | NO | | NULL | |
| gender | varchar(1) | NO | | NULL | |
| score | int(11) | NO | | NULL | |
+----------+--------------+------+-----+---------+----------------+
5 rows in set (0.00 sec)
还可以使用以下命令查看创建表的SQL语句:
mysql> SHOW CREATE TABLE students;
+----------+-------------------------------------------------------+
| students | CREATE TABLE `students` ( |
| | `id` bigint(20) NOT NULL AUTO_INCREMENT, |
| | `class_id` bigint(20) NOT NULL, |
| | `name` varchar(100) NOT NULL, |
| | `gender` varchar(1) NOT NULL, |
| | `score` int(11) NOT NULL, |
| | PRIMARY KEY (`id`) |
| | ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 |
+----------+-------------------------------------------------------+
1 row in set (0.00 sec)
创建表使用CREATE TABLE
语句,而删除表使用DROP TABLE
语句:
mysql> DROP TABLE students;
Query OK, 0 rows affected (0.01 sec)
修改表就比较复杂。如果要给students
表新增一列birth
,使用:
ALTER TABLE students ADD COLUMN birth VARCHAR(10) NOT NULL;
要修改birth
列,例如把列名改为birthday
,类型改为VARCHAR(20)
:
ALTER TABLE students CHANGE COLUMN birth birthday VARCHAR(20) NOT NULL;
要删除列,使用:
ALTER TABLE students DROP COLUMN birthday;
退出MySQL
使用EXIT
命令退出MySQL:
mysql> EXIT
Bye
注意EXIT
仅仅断开了客户端和服务器的连接,MySQL服务器仍然继续运行。
实用SQL语句
在编写SQL时,灵活运用一些技巧,可以大大简化程序逻辑。
插入或替换
如果我们希望插入一条新记录(INSERT),但如果记录已经存在,就先删除原记录,再插入新记录。此时,可以使用REPLACE
语句,这样就不必先查询,再决定是否先删除再插入:
REPLACE INTO students (id, class_id, name, gender, score) VALUES (1, 1, '小明', 'F', 99);
若id=1
的记录不存在,REPLACE
语句将插入新记录,否则,当前id=1
的记录将被删除,然后再插入新记录。
插入或更新
如果我们希望插入一条新记录(INSERT),但如果记录已经存在,就更新该记录,此时,可以使用INSERT INTO ... ON DUPLICATE KEY UPDATE ...
语句:
INSERT INTO students (id, class_id, name, gender, score) VALUES (1, 1, '小明', 'F', 99) ON DUPLICATE KEY UPDATE name='小明', gender='F', score=99;
若id=1
的记录不存在,INSERT
语句将插入新记录,否则,当前id=1
的记录将被更新,更新的字段由UPDATE
指定。
插入或忽略
如果我们希望插入一条新记录(INSERT),但如果记录已经存在,就啥事也不干直接忽略,此时,可以使用INSERT IGNORE INTO ...
语句:
INSERT IGNORE INTO students (id, class_id, name, gender, score) VALUES (1, 1, '小明', 'F', 99);
若id=1
的记录不存在,INSERT
语句将插入新记录,否则,不执行任何操作。
快照
如果想要对一个表进行快照,即复制一份当前表的数据到一个新表,可以结合CREATE TABLE
和SELECT
:
-- 对class_id=1的记录进行快照,并存储为新表students_of_class1:
CREATE TABLE students_of_class1 SELECT * FROM students WHERE class_id=1;
新创建的表结构和SELECT
使用的表结构完全一致。
写入查询结果集
如果查询结果集需要写入到表中,可以结合INSERT
和SELECT
,将SELECT
语句的结果集直接插入到指定表中。
例如,创建一个统计成绩的表statistics
,记录各班的平均成绩:
CREATE TABLE statistics (
id BIGINT NOT NULL AUTO_INCREMENT,
class_id BIGINT NOT NULL,
average DOUBLE NOT NULL,
PRIMARY KEY (id)
);
然后,我们就可以用一条语句写入各班的平均成绩:
INSERT INTO statistics (class_id, average) SELECT class_id, AVG(score) FROM students GROUP BY class_id;
确保INSERT
语句的列和SELECT
语句的列能一一对应,就可以在statistics
表中直接保存查询的结果:
> SELECT * FROM statistics;
+----+----------+--------------+
| id | class_id | average |
+----+----------+--------------+
| 1 | 1 | 86.5 |
| 2 | 2 | 73.666666666 |
| 3 | 3 | 88.333333333 |
+----+----------+--------------+
3 rows in set (0.00 sec)
强制使用指定索引
在查询的时候,数据库系统会自动分析查询语句,并选择一个最合适的索引。但是很多时候,数据库系统的查询优化器并不一定总是能使用最优索引。如果我们知道如何选择索引,可以使用FORCE INDEX
强制查询使用指定的索引。例如:
> SELECT * FROM students FORCE INDEX (idx_class_id) WHERE class_id = 1 ORDER BY id DESC;
指定索引的前提是索引idx_class_id
必须存在。
事务
在执行SQL语句的时候,某些业务要求,一系列操作必须全部执行,而不能仅执行一部分。例如,一个转账操作:
-- 从id=1的账户给id=2的账户转账100元
-- 第一步:将id=1的A账户余额减去100
UPDATE accounts SET balance = balance - 100 WHERE id = 1;
-- 第二步:将id=2的B账户余额加上100
UPDATE accounts SET balance = balance + 100 WHERE id = 2;
这两条SQL语句必须全部执行,或者,由于某些原因,如果第一条语句成功,第二条语句失败,就必须全部撤销。
这种把多条语句作为一个整体进行操作的功能,被称为数据库_事务_。数据库事务可以确保该事务范围内的所有操作都可以全部成功或者全部失败。如果事务失败,那么效果就和没有执行这些SQL一样,不会对数据库数据有任何改动。
可见,数据库事务具有ACID这4个特性:
- A:Atomic,原子性,将所有SQL作为原子工作单元执行,要么全部执行,要么全部不执行;
- C:Consistent,一致性,事务完成后,所有数据的状态都是一致的,即A账户只要减去了100,B账户则必定加上了100;
- I:Isolation,隔离性,如果有多个事务并发执行,每个事务作出的修改必须与其他事务隔离;
- D:Duration,持久性,即事务完成后,对数据库数据的修改被持久化存储。
对于单条SQL语句,数据库系统自动将其作为一个事务执行,这种事务被称为_隐式事务_。
要手动把多条SQL语句作为一个事务执行,使用BEGIN
开启一个事务,使用COMMIT
提交一个事务,这种事务被称为_显式事务_,例如,把上述的转账操作作为一个显式事务:
BEGIN;
UPDATE accounts SET balance = balance - 100 WHERE id = 1;
UPDATE accounts SET balance = balance + 100 WHERE id = 2;
COMMIT;
很显然多条SQL语句要想作为一个事务执行,就必须使用显式事务。
COMMIT
是指提交事务,即试图把事务内的所有SQL所做的修改永久保存。如果COMMIT
语句执行失败了,整个事务也会失败。
有些时候,我们希望主动让事务失败,这时,可以用ROLLBACK
回滚事务,整个事务会失败:
BEGIN;
UPDATE accounts SET balance = balance - 100 WHERE id = 1;
UPDATE accounts SET balance = balance + 100 WHERE id = 2;
ROLLBACK;
数据库事务是由数据库系统保证的,我们只需要根据业务逻辑使用它就可以。
隔离级别
对于两个并发执行的事务,如果涉及到操作同一条记录的时候,可能会发生问题。因为并发操作会带来数据的不一致性,包括脏读、不可重复读、幻读等。数据库系统提供了隔离级别来让我们有针对性地选择事务的隔离级别,避免数据不一致的问题。
Read Uncommitted
Read Uncommitted是隔离级别最低的一种事务级别。在这种隔离级别下,一个事务会读到另一个事务更新后但未提交的数据,如果另一个事务回滚,那么当前事务读到的数据就是脏数据,这就是脏读(Dirty Read)。
我们来看一个例子。
首先,我们准备好students
表的数据,该表仅一行记录:
mysql> select * from students;
+----+-------+
| id | name |
+----+-------+
| 1 | Alice |
+----+-------+
1 row in set (0.00 sec)
然后,分别开启两个MySQL客户端连接,按顺序依次执行事务A和事务B:...
当事务A执行完第3步时,它更新了id=1
的记录,但并未提交,而事务B在第4步读取到的数据就是未提交的数据。
随后,事务A在第5步进行了回滚,事务B再次读取id=1
的记录,发现和上一次读取到的数据不一致,这就是脏读。
可见,在Read Uncommitted隔离级别下,一个事务可能读取到另一个事务更新但未提交的数据,这个数据有可能是脏数据。
Read Committed
在Read Committed隔离级别下,一个事务可能会遇到不可重复读(Non Repeatable Read)的问题。
不可重复读是指,在一个事务内,多次读同一数据,在这个事务还没有结束时,如果另一个事务恰好修改了这个数据,那么,在第一个事务中,两次读取的数据就可能不一致。
Repeatable Read
在Repeatable Read隔离级别下,一个事务可能会遇到幻读(Phantom Read)的问题。
幻读是指,在一个事务中,第一次查询某条记录,发现没有,但是,当试图更新这条不存在的记录时,竟然能成功,并且,再次读取同一条记录,它就神奇地出现了。
事务B在第3步第一次读取id=99
的记录时,读到的记录为空,说明不存在id=99
的记录。随后,事务A在第4步插入了一条id=99
的记录并提交。事务B在第6步再次读取id=99
的记录时,读到的记录仍然为空,但是,事务B在第7步试图更新这条不存在的记录时,竟然成功了,并且,事务B在第8步再次读取id=99
的记录时,记录出现了。
可见,幻读就是没有读到的记录,以为不存在,但其实是可以更新成功的,并且,更新成功后,再次读取,就出现了。
Serializable是最严格的隔离级别。在Serializable隔离级别下,所有事务按照次序依次执行,因此,脏读、不可重复读、幻读都不会出现。
虽然Serializable隔离级别下的事务具有最高的安全性,但是,由于事务是串行执行,所以效率会大大下降,应用程序的性能会急剧降低。如果没有特别重要的情景,一般都不会使用Serializable隔离级别。
默认隔离级别
如果没有指定隔离级别,数据库就会使用默认的隔离级别。在MySQL中,如果使用InnoDB,默认的隔离级别是Repeatable Read。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。