2

朋友们在遇到线程安全问题的时候,大多数情况下可能会使用synchronized关键字,每次只允许一个线程进入锁定的方法或代码块,这样就可以保证操作的原子性,保证对公共资源的修改不会出现莫名其妙的问题。这种加锁的机制,在并发量小的情况下还好,如果并发量较大时,会有大量的线程等待同一个对象锁,会造成系统吞吐量直线下降。

       JDK的开发者可能也考虑到使用synchronized的弊端,于是出现了volatile 和 ThreadLocal等另外的思路解决线程安全问题。volatile它所修饰的变量不保留拷贝,直接访问主内存,主要用于一写多读的场景。ThreadLocal是给每一个线程都创建变量的副本,保证每个线程访问都是自己的副本,相互隔离,就不会出现线程安全问题,这种方式其实用空间换时间的做法。其他的内容以后有空再讨论,今天我们重点聊一下 ThreadLocal。

接下来,我们将从以下几个方面介绍ThreadLocal

  • 如何使用ThreadLocal?
  • ThreadLocal的工作原理
  • ThreadLocal源码解析
  • ThreadLocal有哪些坑

1.如何使用ThreadLocal?

在使用ThreadLocal之前我们先一起看个例子

/**
 * 不安全线程场景
 *
 * @author sue
 * @date 2020/8/12 21:21
 */
public class TestThread {

    private int count = 0;

    public void calc() {
        count++;
    }

    public int getCount() {
        return count;
    }

    public static void main(String[] args) throws InterruptedException {
        TestThread testThread = new TestThread();
        for (int i = 0; i < 20; i++) {
            new ThreadA(i, testThread).start();
        }
        Thread.sleep(200);
        System.out.println("realCount:" + testThread.getCount());
    }
}

class ThreadA extends Thread {

    private int i;
    private TestThread testThread;

    ThreadA(int i, TestThread testThread) {
        this.i = i;
        this.testThread = testThread;
    }

    public void run() {
        try {
            Thread.sleep(10);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        testThread.calc();
        System.out.println("i:" + i + ",count:" + testThread.getCount());
    }
}

运行结果:

i:8,count:8
i:7,count:8
i:11,count:10
i:4,count:11
i:13,count:12
i:2,count:8
i:0,count:8
i:9,count:8
i:3,count:8
i:1,count:8
i:5,count:8
i:6,count:8
i:12,count:11
i:10,count:9
i:14,count:15
i:18,count:17
i:15,count:18
i:17,count:16
i:16,count:15
i:19,count:18
realCount:18

我们可以看到,realCount最终出现错误,预计的结果应该是20,实际情况却是18,出现了线程安全问题。

接下来,把程序改成ThreadLocal运行结果会怎样?

/**
 * ThreadLocal场景
 *
 * @author sue
 * @date 2020/8/12 21:21
 */
public class TestThreadLocal {

    private ThreadLocal<Integer> threadLocal = new ThreadLocal<>();

    public void calc() {
        threadLocal.set(getCount() + 1);
    }

    public int getCount() {
        Integer integer = threadLocal.get();
        return integer != null ? integer : 0;
    }

    public static void main(String[] args) throws InterruptedException {
        TestThreadLocal testThreadLocal = new TestThreadLocal();
        for (int i = 0; i < 20; i++) {
            new ThreadB(i, testThreadLocal).start();
        }
        Thread.sleep(200);
        System.out.println("realCount:" + testThreadLocal.getCount());
    }

}

class ThreadB extends Thread {

    private int i;
    private TestThreadLocal testThreadLocal;

    ThreadB(int i, TestThreadLocal testThreadLocal) {
        this.i = i;
        this.testThreadLocal = testThreadLocal;
    }

    public void run() {
        try {
            Thread.sleep(10);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        testThreadLocal.calc();
        System.out.println("i:" + i + ",count:" + testThreadLocal.getCount());
    }
}

运行结果:

i:6,count:1
i:10,count:1
i:3,count:1
i:0,count:1
i:7,count:1
i:11,count:1
i:9,count:1
i:5,count:1
i:8,count:1
i:1,count:1
i:4,count:1
i:2,count:1
i:13,count:1
i:15,count:1
i:14,count:1
i:19,count:1
i:18,count:1
i:17,count:1
i:12,count:1
i:16,count:1
realCount:0

我们可以看到,跟之前的例子运行结果差别很大,首先现在count全部都是1,之前count有8,10,11,12等很多值。其次realCount之前是18,现在的realCount却是0。为什么会造成这样的差异呢?

2.ThreadLocal的工作原理

先看看示例1中的情况

我们可以看到多个线程可以同时访问公共资源count,当某个线程在执行count++的时候,可能其他的线程正好同时也执行count++。但由于多个线程变量count的不可见性,会导致另外的线程拿到旧的count值+1,这样就出现了realCount预计是20,但是实际上是18的数据问题。

再看看示例2中的情况:

       如图所示,往大的方向上说,ThreadLocal会给每一个线程都创建变量的副本,保证每个线程访问都是自己的副本,相互隔离。

     往小的方向上说,每个线程内部都有一个threadLocalMap,每个threadLocalMap里面都包含了一个entry数组,而entry是由threadLocal和数据(这里指的是count)组成的。这样一来,每个线程都拥有自己专属的变量count。示例2中线程1调用calc方法时,会先调用的getCount方法,由于第一次调用threadLocal.get()返回是空的,所以getCount返回值是0。这样threadLocal.set(getCount() + 1);就变成了threadLocal.set(0 + 1);它会给线程1中threadLocal的数据值设置成1。线程2再调用calc方法,同样会先调用getCount方法,由于第一次调用threadLocal.get()返回是空的,所以getCount返回值也是0。这样threadLocal.set(getCount() + 1);会给线程2中threadLocal的数据值也设置成1。。。。。。最后每个线程的threadLocal中的数据值都是1。

还有,示例2中打印出来的realCount为什么是0呢?

      因为testThreadLocal.getCount()是在主线程中调用的,其他的线程改变只会影响自己的副本,不会影响原始变量,count初始值是0,所以最后还是0。

**3.ThreadLocal源码解析
**

在介绍ThreadLocal之前,让我们一起先看看Thread类

ThreadLocal.ThreadLocalMap threadLocals = null;

可以看到Thread类中定义了一个叫threadLocals的成员变量,它的类型是ThreadLocal.ThreadLocalMap。很明显ThreadLocalMap是ThreadLocal的内部类,验证了我在图中画的内容,每个线程都有一个ThreadLocalMap对象。

我们再重点看看ThreadLocalMap

static class ThreadLocalMap {

      static class Entry extends WeakReference<ThreadLocal<?>> {
          /** The value associated with this ThreadLocal. */
          Object value;

          Entry(ThreadLocal<?> k, Object v) {
              super(k);
              value = v;
          }
      }

      /**
       * The initial capacity -- MUST be a power of two.
       */
      private static final int INITIAL_CAPACITY = 16;

      /**
       * The table, resized as necessary.
       * table.length MUST always be a power of two.
       */
      private Entry[] table;

      /**
       * The number of entries in the table.
       */
      private int size = 0;

      /**
       * The next size value at which to resize.
       */
      private int threshold; // Default to 0

      /**
       * Set the resize threshold to maintain at worst a 2/3 load factor.
       */
      private void setThreshold(int len) {
          threshold = len * 2 / 3;
      }

       ........省略
  }

由于该方法太长了,我在这里省略了部分内容。从以上代码可以看到ThreadLocalMap里面包含了一个叫table的数组,它的类型是Entry,Entry是WeakReference(弱引用)的子类,Entry又包含了 ThreadLocal变量 和Object的value ,其中ThreadLocal变量做为WeakReference的referent。

接下来,我们再回到ThreadLocal类,常用的其实就下面四个方法:get(), initialValue(),set(T value) 和 remove(),接下来我们会逐一介绍。

首先看看get()方法

public T get() {
    //获取当前线程
    Thread t = Thread.currentThread();
    //获取当前线程中的ThreadLocalMap对象
    ThreadLocalMap map = getMap(t);
    //如果可以查询到数据
    if (map != null) {
        //从ThreadLocalMap中获取entry对象
        ThreadLocalMap.Entry e = map.getEntry(this);
        //如果entry存在
        if (e != null) {
            @SuppressWarnings("unchecked")
            //获取entry中的值
            T result = (T)e.value;
            //返回获取到的值
            return result;
        }
    }
    //调用初始化方法
    return setInitialValue();
}

其中的getMap方法


ThreadLocalMap getMap(Thread t) {
    return t.threadLocals;
}

再简单不过了,直接返回的是当前线程的成员变量threadLocals

再看看getEntry方法

private Entry getEntry(ThreadLocal<?> key) {
    //threadLocalHashCode是key的hash值
    //key.threadLocalHashCode & (table.length - 1),
    //相当于threadLocalHashCode对table.length - 1的取余操作,
    //这样可以保证数组的下表在0到table.length - 1之间。
    int i = key.threadLocalHashCode & (table.length - 1);
    //获取下标对应的entry
    Entry e = table[i];
    //如果entry不为空,并且从弱引用中获取到的值(threadLocal) 和 key相同 
    if (e != null && e.get() == key)
        //返回获取到的entry
        return e;
    else
       //如果没有获取到entry或者e.get()获取不到数据,则清理空数据
        return getEntryAfterMiss(key, i, e);
}

我之前说过entry是WeakReference的子类,那么e.get()方法会调用:

 public T get() {
      return this.referent;
  }

返回的是一个引用,这个引用就是构造器传入的threadLocal对象。

getEntryAfterMiss里面有说明逻辑呢?

private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
    Entry[] tab = table;
    int len = tab.length;

    while (e != null) {
        ThreadLocal<?> k = e.get();
        if (k == key)
            return e;
        if (k == null)
            expungeStaleEntry(i);
        else
            i = nextIndex(i, len);
        e = tab[i];
    }
    return null;
}

该方法里面会调用expungeStaleEntry方法,后面我们会重点介绍的。

再看看setInitialValue方法

protected T initialValue() {

return null;  

}

private T setInitialValue() {
    //调用用户自定义的initialValue方法,默认值是null
    T value = initialValue();
    //获取当前线程
    Thread t = Thread.currentThread();
    //获取当前线程中的ThreadLocalMap,跟之前一样
    ThreadLocalMap map = getMap(t);
    //如果ThreadLocalMap不为空,
    if (map != null)
        //则覆盖key为当前threadLocal的值
        map.set(this, value);
    else
       //否则创建新的ThreadLocalMap
        createMap(t, value);
    //返回用户自定义的值    
    return value;
}

当中的initialValue()方法,就是我们要介绍的第二个方法

  protected T initialValue() {
      return null;
  }

我们可以看到该方法只有一个空实现,等着用户的子类重写之后重新实现。

接下来重点看看threadLocalMap的set方法

private void set(ThreadLocal<?> key, Object value) {
    //将table数组赋值给新数组tab
    Entry[] tab = table;
    //获取数组长度
    int len = tab.length;
    //跟之前一样计算数组中的下表
    int i = key.threadLocalHashCode & (len-1);

    //循环变量tab获取entry
    for (Entry e = tab[i];
         e != null;
         e = tab[i = nextIndex(i, len)]) {
        //获取entry中的threadLocal对象 
        ThreadLocal<?> k = e.get();
        //如果threadLocal对象不为空,并且等于key
        if (k == key) {
            //覆盖已有数据
            e.value = value;
            //返回
            return;
        }
        //如果threadLocal对象为空
        if (k == null) {
            //创建一个新的entry赋值给已有key
            replaceStaleEntry(key, value, i);
            return;
        }
    }

    //如果key不在已有数据中,则创建一个新的entry
    tab[i] = new Entry(key, value);
    //长度+1
    int sz = ++size;
    if (!cleanSomeSlots(i, sz) && sz >= threshold)
        rehash();
}

replaceStaleEntry方法也会调用expungeStaleEntry方法。

再看看setInitialValue方法中的createMap方法

void createMap(Thread t, T firstValue) {
    t.threadLocals = new ThreadLocalMap(this, firstValue);
}

代码很简单,就是new了一个ThreadLocalMap对象。

好了,到这来get() 和 initialValue() 方法介绍完了。

下面介绍set(T value) 方法

public void set(T value) {
    //获取当前线程,都是一样的套路
    Thread t = Thread.currentThread();
    //根据当前线程获取当中的ThreadLocalMap
    ThreadLocalMap map = getMap(t);
    //ThreadLocalMap不为空,则调用之前介绍过的ThreadLocalMap的set方法
    if (map != null)
        map.set(this, value);
    else
       //如果ThreadLocalMap为空,则创建一个对象,之前也介绍过
        createMap(t, value);
}

so easy

最后,看看remove()方法

public void remove() {
     //还是那个套路,不过简化了一下
     //先获取当前线程,再获取线程中的ThreadLocalMap对象
     ThreadLocalMap m = getMap(Thread.currentThread());
     //如果ThreadLocalMap不为空
     if (m != null)
         //删除数据
         m.remove(this);
 }

这个方法的关键就在于ThreadLocalMap类的remove方法

private void remove(ThreadLocal<?> key) {
    //将table数组赋值给新数组tab
    Entry[] tab = table;
    //获取数组长度
    int len = tab.length;
    //跟之前一样计算数组中的下表
    int i = key.threadLocalHashCode & (len-1);
    //循环变量从下表i之后不为空的entry
    for (Entry e = tab[i];
         e != null;
         e = tab[i = nextIndex(i, len)]) {
        //如果可以获取到threadLocal并且值等于key 
        if (e.get() == key) {
            //清空引用
            e.clear();
            //处理threadLocal为空但是value不为空的entry
            expungeStaleEntry(i);
            return;
        }
    }
}

其中的clear方法,也很简单,只是把引用设置为null,即清空引用

public void clear() {
    this.referent = null;
}

我们可以看到get()、set(T value) 和 remove()方法,都会调用expungeStaleEntry方法,我们接下来重点看一下expungeStaleEntry方法

private int expungeStaleEntry(int staleSlot) {
    Entry[] tab = table;
    int len = tab.length;

    //将位置staleSlot对应的entry中的value设置为null,有助于垃圾回收
    tab[staleSlot].value = null;
    //将位置staleSlot对应的entry设置为null,有助于垃圾回收
    tab[staleSlot] = null;
    //数组大小-1
    size--;

    Entry e;
    int i;
    //变量staleSlot之后entry不为空的数据
    for (i = nextIndex(staleSlot, len);
         (e = tab[i]) != null;
         i = nextIndex(i, len)) {
        //获取当前位置的entry中对应的threadLocal 
        ThreadLocal<?> k = e.get();
        //threadLocal为空,说明是脏数据
        if (k == null) {
            //value设置为null,有助于垃圾回收
            e.value = null;
            //当前位置的entry设置为null
            tab[i] = null;
            //数组大小-1
            size--;
        } else {
            //重新计算位置
            int h = k.threadLocalHashCode & (len - 1);
            //如果h和i不相等,说明存在hash冲突
            //现在它前面的脏Entry被清理
            //该Entry需要向前移动,防止下次get()或set()的时候
            //再次因散列冲突而查找到null值
            if (h != i) {
                tab[i] = null;
                while (tab[h] != null)
                    h = nextIndex(h, len);
                tab[h] = e;
            }
        }
    }
    return i;
}

该方法首先清除当前位置的脏Entry,然后向后遍历直到table[i]==null。在遍历的过程中如果再次遇到脏Entry就会清理。如果没有遇到就会重新变量当前遇到的Entry,如果重新散列得到的下标h与当前下标i不一致,说明该Entry被放入Entry数组的时候发生了散列冲突(其位置通过再散列被向后偏移了),现在其前面的脏Entry已经被清除,所以当前Entry应该向前移动,补上空位置。否则下次调用set()或get()方法查找该Entry的时候会查找到位于其之前的null值。

为什么要做这样的清除?

我们知道entry对象里面包含了threadLocal和value,threadLocal是WeakReference(弱引用)的referent。每次垃圾回收期触发GC的时候,都会回收WeakReference的referent,会将referent设置为null。那么table数组中就会存在很多threadLocal = null 但是 value不为空的entry,这种entry的存在是没有任何实际价值的。这种数据通过getEntry是获取不到值,因为它里面有if (e != null && e.get() == key)这句判断。

为什么要使用WeakReference(弱引用)?

如果使用强引用,ThreadLocal在用户进程不再被引用,但是只要线程不结束,在ThreadLocalMap中就还存在引用,无法被GC回收,会导致内存泄漏。如果用户线程耗时非常长,这个问题尤为明显。

另外在使用线程池技术的时候,由于线程不会被销毁,回收之后,下一次又会被重复利用,会导致ThreadLocal无法被释放,最终也会导致内存泄露问题。

4.ThreadLocal有哪些坑

内存泄露问题:

ThreadLocal即使使用了WeakReference(弱引用)也可能会存在内存泄露问题,因为 entry对象中只把key(即threadLocal对象)设置成了弱引用,但是value值没有。还是会存在下面的强依赖:

Thread -> ThreaLocalMap -> Entry -> value

      要解决这个问题就需要调用get()、set(T value) 或 remove()方法。但是 get()和set(T value) 方法是基于垃圾回收器把key回收之后的基础之上触发的数据清理。如果出现垃圾回收器回收不及时的情况,也一样有问题。

        所以,最保险的做法是在使用完threadLocal之后,手动调用一下remove方法,从源码可以看到,该方法会把entry中的key(即threadLocal对象)和value一起清空。

        线程安全问题:

        可能有些朋友认为使用了threadLocal就不会出现线程安全问题了,其实是不对的。假如我们定义了一个static的变量count,多线程的情况下,threadLocal中的value需要修改并设置count的值,它一样有问题。因为static的变量是多个线程共享的,不会再单独保存副本。

5.总结

1.每个线程都有一个threadLocalMap对象,每个threadLocalMap里面都包含了一个entry数组,而entry是由key(即threadLocal)和value(数据)组成。

2.entry的key是弱引用,可以被垃圾回收器回收。

3.threadLocal最常用的这四个方法:get(), initialValue(),set(T value) 和 remove(),除了initialValue方法,其他的方法都会调用expungeStaleEntry方法做key==null的数据清理工作。

4.threadLocal可能存在内存泄露和线程安全问题,使用完之后,要手动调用remove方法。

朋友们如果喜欢这篇文章的话,请关注一下我的公众账号 :苏三说技术,后面会有很多干货分享,谢谢大家。


苏三说技术
211 声望33 粉丝