1

2020-09-24更新

修复文章的问题:

  • 去除使用time.Ticker方法修复bug,不符合select超时逻辑
  • 以前使用go tool pprof分析内存占用方法是错误的,现在已经更改过来了。

    前言

嗨,大家好,我是asong,我今天又来了。昨天发表了一篇文章:手把手教姐姐写消息队列,其中一段代码被细心的读者发现了有内存泄漏的危险,确实是这样,自己没有注意到这方面,追求完美的我,马上进行了排查并更改了这个bug。现在我就把这个bug分享一下,避免小伙伴们后续踩坑。

测试代码已经放到了github:https://github.com/asong2020/...

欢迎star~~~

背景

我先贴一下会发生内存泄漏的代码段,根据代码可以更好的进行讲解:

func (b *BrokerImpl) broadcast(msg interface{}, subscribers []chan interface{}) {
    count := len(subscribers)
    concurrency := 1

    switch {
    case count > 1000:
        concurrency = 3
    case count > 100:
        concurrency = 2
    default:
        concurrency = 1
    }

    pub := func(start int) {
        for j := start; j < count; j += concurrency {
            select {
            case subscribers[j] <- msg:
        case <-time.After(time.Millisecond * 5):
            case <-b.exit:
                return
            }
        }
    }
    for i := 0; i < concurrency; i++ {
        go pub(i)
    }
}

看了这段代码,你知道是哪里发生内存泄漏了嘛?我先来告诉大家,这里time.After(time.Millisecond * 5)会发生内存泄漏,具体原因嘛别着急,我们一步步分析。

验证

我们来写一段代码进行验证,先看代码吧:

package main

import (
    "fmt"
    "net/http"
    _ "net/http/pprof"
    "time"
)

/**
    time.After oom 验证demo
 */
func main()  {
    ch := make(chan string,100)

    go func() {
        for  {
            ch <- "asong"
        }
    }()
    go func() {
        // 开启pprof,监听请求
        ip := "127.0.0.1:6060"
        if err := http.ListenAndServe(ip, nil); err != nil {
            fmt.Printf("start pprof failed on %s\n", ip)
        }
    }()

    for  {
        select {
        case <-ch:
        case <- time.After(time.Minute * 3):
        }
    }
}

这段代码我们该怎么验证呢?看代码估计你们也猜到了,没错就是go tool pprof,可能有些小伙伴不知道这个工具,那我简单介绍一下基本使用,不做详细介绍,更多功能可自行学习。

再介绍pprof之前,我们其实还有一种方法,可以测试此段代码是否发生了内存泄漏,就是使用top命令查看该进程占用cpu情况,输入top命令,我们会看到cpu一直在飙升,这种方法可以确定发生内存泄漏,但是不能确定发生问题的代码在哪部分,所以最好还是使用pprof工具进行分析,他可以确定具体出现问题的代码。

proof 介绍

定位goroutine泄露会使用到pprof,pprof是Go的性能工具,在程序运行过程中,可以记录程序的运行信息,可以是CPU使用情况、内存使用情况、goroutine运行情况等,当需要性能调优或者定位Bug时候,这些记录的信息是相当重要。使用pprof有多种方式,Go已经现成封装好了1个:net/http/pprof,使用简单的几行命令,就可以开启pprof,记录运行信息,并且提供了Web服务,能够通过浏览器和命令行2种方式获取运行数据。

基本使用也很简单,看这段代码:

package main

import (
    "fmt"
    "net/http"
    _ "net/http/pprof"
)

func main() {
    // 开启pprof,监听请求
    ip := "127.0.0.1:6060"
    if err := http.ListenAndServe(ip, nil); err != nil {
        fmt.Printf("start pprof failed on %s\n", ip)
    }
}

使用还是很简单的吧,这样我们就开启了go tool pprof。下面我们开始实践来说明pprof的使用。

验证流程

首先我们先运行我的测试代码,然后打开我们的终端输入如下命令:

$ go tool pprof -http=:8081 http://localhost:6060/debug/pprof/heap

浏览器会自动弹出,看下图:

看这个图,都爆红了,time.Timer导致占用CPU内存飙升,现在找到问题了,下面我们就可以来分析一下了。

原因分析

分析具体原因之前,我们先来了解一下go中两个定时器tickertimer,因为不知道这两个的使用,确实不知道具体原因。

ticker和timer

Golang中time包有两个定时器,分别为ticker 和 timer。两者都可以实现定时功能,但各自都有自己的使用场景。

我们来看一下他们的区别:

  • ticker定时器表示每隔一段时间就执行一次,一般可执行多次。
  • timer定时器表示在一段时间后执行,默认情况下只执行一次,如果想再次执行的话,每次都需要调用 time.Reset()方法,此时效果类似ticker定时器。同时也可以调用stop()方法取消定时器
  • timer定时器比ticker定时器多一个Reset()方法,两者都有Stop()方法,表示停止定时器,底层都调用了stopTimer()函数。

原因

上面我们了介绍go的两个定时器,现在我们回到我们的问题,我们的代码使用time.After来做超时控制,time.After其实内部调用的就是timer定时器,根据timer定时器的特点,具体原因就很明显了。

这里我们的定时时间设置的是3分钟, 在for循环每次select的时候,都会实例化一个一个新的定时器。该定时器在3分钟后,才会被激活,但是激活后已经跟select无引用关系,被gc给清理掉。这里最关键的一点是在计时器触发之前,垃圾收集器不会回收 Timer,换句话说,被遗弃的time.After定时任务还是在时间堆里面,定时任务未到期之前,是不会被gc清理的,所以这就是会造成内存泄漏的原因。每次循环实例化的新定时器对象需要3分钟才会可能被GC清理掉,如果我们把上面代码中的3分钟改小点,会有所改善,但是仍存在风险,下面我们就使用正确的方法来修复这个bug。

修复bug

方法一:使用timer定时器

time.After虽然调用的是timer定时器,但是他没有使用time.Reset() 方法再次激活定时器,所以每一次都是新创建的实例,才会造成的内存泄漏,我们添加上time.Reset每次重新激活定时器,即可完成解决问题。

func (b *BrokerImpl) broadcast(msg interface{}, subscribers []chan interface{}) {
    count := len(subscribers)
    concurrency := 1

    switch {
    case count > 1000:
        concurrency = 3
    case count > 100:
        concurrency = 2
    default:
        concurrency = 1
    }

    //采用Timer 而不是使用time.After 原因:time.After会产生内存泄漏 在计时器触发之前,垃圾回收器不会回收Timer
    pub := func(start int) {
    idleDuration := 5 * time.Millisecond
    idleTimeout := time.NewTimer(idleDuration)
    defer idleTimeout.Stop()
   for j := start; j < count; j += concurrency {
      if !idleTimeout.Stop(){
         select {
         case <- idleTimeout.C:
         default:
         }
      }
      idleTimeout.Reset(idleDuration)
      select {
      case subscribers[j] <- msg:
      case <-idleTimeout.C:
      case <-b.exit:
         return
 }
   }
}
    for i := 0; i < concurrency; i++ {
        go pub(i)
    }
}

总结

不知道这篇文章你们看懂了吗?没看懂的可以下载测试代码,自己测试一下,更能加深印象的呦~~~

这篇文章主要介绍了排查问题的思路,go tool pprof这个工具很重要,遇到性能和内存gc问题,都可以使用golang tool pprof来排查分析问题。不会的小伙伴还是要学起来的呀~~~

最后感谢指出问题的那位网友,让我又有所收获,非常感谢,所以说嘛,还是要共同进步的呀,你不会的,并不代表别人不会,虚心使人进步嘛,加油各位小伙伴们~~~

结尾给大家发一个小福利吧,最近我在看[微服务架构设计模式]这一本书,讲的很好,自己也收集了一本PDF,有需要的小伙可以到自行下载。获取方式:关注公众号:[Golang梦工厂],后台回复:[微服务],即可获取。

我翻译了一份GIN中文文档,会定期进行维护,有需要的小伙伴后台回复[gin]即可下载。

我是asong,一名普普通通的程序猿,让我一起慢慢变强吧。我自己建了一个golang交流群,有需要的小伙伴加我vx,我拉你入群。欢迎各位的关注,我们下期见~~~

推荐往期文章:


asong
605 声望907 粉丝