作者:Aral Roca翻译:疯狂的技术宅
原文:https://dev.to/christinamcmah...
未经允许严禁转载
首先明确三个概念:
算法: 按步骤解决问题的过程。
范式: 思考问题的模式。
算法范式: 为问题构建高效解决方案的常规方法。
本文讨论一些常用的算法范式,例如
- 分治算法
- 动态规划
- 贪婪算法
- 回溯算法
分治法
在排序算法中,合并和快速排序这两种算法的共同点就是分而治之的算法。
分而治之是一种常见的算法设计,它的思路是把问题分解为与原始问题相似的较小子问题。通常以递归方式解决子问题,并结合子问题的解决方案来解决原始问题。
分治法的逻辑可以分为三个步骤:
- 将原始问题划分为较小的子问题。
- 通过递归解决子问题,解决完毕之后返回子问题的解决方案。
- 将子问题的解决方案合并为原始问题的解决方案。
分治法的例子:二叉搜索
下面是用分治实现的二叉搜索。
function binarySearchRecursive(array, value, low, high) {
if (low <= high) {
const mid = Math.floor((low + high) / 2);
const element = array[mid];
if (element < value) {
return binarySearchRecursive(array, value, mid + 1, high);
} else if (element > value) {
return binarySearchRecursive(array, value, low, mid - 1);
} else {
return mid;
}
}
return null;
}
export function binarySearch(array, value) {
const sortedArray = quickSort(array);
const low = 0;
const high = sortedArray.length - 1;
return binarySearchRecursive(array, value, low, high);
}
请注意,上面的 binarySearch
函数是供他人调用的,而 binarySearchRecursive
是实现分治法的地方。
动态规划法
动态规划是一种优化技术,用于通过把复杂问题分解为较小的子问题来解决。看上去很像是分治法,但动态规划不是把问题分解为独立的子问题然后再组合在一起,而是只把问题分解为独立的子问题。
算法逻辑分为三个步骤:
- 定义子问题。
- 重复解决子问题。
- 识别并解决基本问题。
动态规划案例:最小硬币找零问题
这是一个名为为硬币找零问题的常见面试题。硬币找零问题是给定找零的金额,找出可以用多少特定数量的硬币来找零的方式。最小硬币找零问题只是找到使用给定面额的钱所需的最少硬币数量。例如,如果需要找零 3 毛 7 分,则可以使用 1 个 2 分,1个 5 分,1 个 1 毛钱和1个 2 毛钱。
function minCoinChange(coins, amount) {
const cache = [];
const makeChange = (value) => {
if (!value) {
return [];
}
if (cache[value]) {
return cache[value];
}
let min = [];
let newMin;
let newAmount;
for (let i = 0; i < coins.length; i++) {
const coin = coins[i];
newAmount = value - coin;
if (newAmount >= 0) {
newMin = makeChange(newAmount);
}
if (newAmount >= 0 &&
(newMin.length < min.length - 1 || !min.length) && (newMin.length || !newAmount)) {
min = [coin].concat(newMin);
}
}
return (cache[value] = min);
}
return makeChange(amount);
}
在上面的代码中,参数 coins
表示面额(在人民币中为 [1, 2, 5, 10, 20, 50])。为了防止重复计算,用到了一个 cache
。 makeChange
函数是递归实现的,它是一个内部函数,可以访问 cache
。
console.log(minCoinChange([1, 2, 5 10, 20], 37)); // => [2, 5, 10, 20]
console.log(minCoinChange([1, 3, 4], 6)) // => [3, 3]
贪心算法
贪心算法与当前的最优解决方案相关,并试图找到一个全局的最佳方案。与动态规划不同,它不考虑全局。贪心算法倾向于简单直观,但可能不是整体最优的解决方案。
贪心算法案例:最小硬币找零问题
上面用动态规划解决的硬币问题也可以用贪心算法解决。这个解决方案的是否能得到最优解取决于所采用的面额。
function minCoinChange(coins, amount) {
const change = [];
let total = 0;
for (let i = coins.length; i>= 0; i--) {
const coin = coins[i];
while (total + coin <= amount) {
change.push(coin);
total += coin;
}
}
return change;
}
可以看到,贪心算法比动态规划的方案要简单得多。下面看一下同样的求解案例,来了解两者之间的区别:
console.log(minCoinChange([1, 2, 5 10, 20], 37)); // => [2, 5, 10, 20]
console.log(minCoinChange([1, 3, 4], 6)) // => [4, 1, 1]
贪心算法给出了第一个问题的最优解,但第二个并不是最优解(应该是 [3,3]
)。
贪心算法比动态规划算法要简单而且更快,但是得到的有可能不是最优解。
回溯算法
回溯算法非常适合逐步查找和构建解决方案。
- 尝试以一种方式解决问题。
- 如果它不起作用,就回溯并重复步骤 1,直到找到合适的解决方案为止。
对于回溯算法,我会另写一篇文章来介绍更复杂的算法。究竟写什么我还没想好,也许是写一个对数独求解的程序,如果你对这个感兴趣,请关注我的公众号!
算法是永无止境的,希望本文能帮你了解一些常见的算法范式。
本文首发微信公众号:前端先锋
欢迎扫描二维码关注公众号,每天都给你推送新鲜的前端技术文章
欢迎继续阅读本专栏其它高赞文章:
- 深入理解Shadow DOM v1
- 一步步教你用 WebVR 实现虚拟现实游戏
- 13个帮你提高开发效率的现代CSS框架
- 快速上手BootstrapVue
- JavaScript引擎是如何工作的?从调用栈到Promise你需要知道的一切
- WebSocket实战:在 Node 和 React 之间进行实时通信
- 关于 Git 的 20 个面试题
- 深入解析 Node.js 的 console.log
- Node.js 究竟是什么?
- 30分钟用Node.js构建一个API服务器
- Javascript的对象拷贝
- 程序员30岁前月薪达不到30K,该何去何从
- 14个最好的 JavaScript 数据可视化库
- 8 个给前端的顶级 VS Code 扩展插件
- Node.js 多线程完全指南
- 把HTML转成PDF的4个方案及实现
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。