Java 语言有哪些特点?

  1. 简单易学;
  2. 面向对象(封装,继承,多态);
  3. 平台无关性( Java 虚拟机实现平台无关性);
  4. 可靠性;
  5. 安全性;
  6. 支持多线程( C++ 语言没有内置的多线程机制,因此必须调用操作系统的多线程功能来进行多线程程序设计,而 Java 语言却提供了多线程支持);
  7. 支持网络编程并且很方便( Java 语言诞生本身就是为简化网络编程设计的,因此 Java 语言不仅支持网络编程而且很方便);
  8. 编译与解释并存;

什么是字节码?采用字节码的好处是什么?

在 Java 中,JVM 可以理解的代码就叫做字节码(即扩展名为 .class 的文件),它不面向任何特定的处理器,只面向虚拟机。Java 语言通过字节码的方式,在一定程度上解决了传统解释型语言执行效率低的问题,同时又保留了解释型语言可移植的特点。所以 Java 程序运行时比较高效,而且,由于字节码并不针对一种特定的机器,因此,Java 程序无须重新编译便可在多种不同操作系统的计算机上运行。

1.1.4. Java 和 C++的区别?

  • 都是面向对象的语言,都支持封装、继承和多态
  • Java 不提供指针来直接访问内存,程序内存更加安全
  • Java 的类是单继承的,C++ 支持多重继承;虽然 Java 的类不可以多继承,但是接口可以多继承。
  • Java 有自动内存管理垃圾回收机制(GC),不需要程序员手动释放无用内存
  • 在 C 语言中,字符串或字符数组最后都会有一个额外的字符'0'来表示结束。但是,Java 语言中没有结束符这一概念。 这是一个值得深度思考的问题,具体原因推荐看这篇文章: https://blog.csdn.net/sszgg2006/article/details/49148189

1.2.1. 字符型常量和字符串常量的区别?

  1. 形式上: 字符常量是单引号引起的一个字符; 字符串常量是双引号引起的0个或若干个字符
  2. 含义上: 字符常量相当于一个整型值( ASCII 值),可以参加表达式运算; 字符串常量代表一个地址值(该字符串在内存中存放位置)
  3. 占内存大小 字符常量只占 2 个字节; 字符串常量占若干个字节 (注意: char 在 Java 中占两个字节)

List的常见实现类

ArrayList 是一个数组队列,相当于动态数组。它由数组实现,随机访问效率高,随机插入、随机删除效率低。

LinkedList 是一个双向链表。它也可以被当作堆栈、队列或双端队列进行操作。LinkedList随机访问效率低,但随机插入、随机删除效率高。

Vector 是矢量队列,和ArrayList一样,它也是一个动态数组,由数组实现。但是ArrayList是非线程安全的,而Vector是线程安全的。

Stack 是栈,它继承于Vector。它的特性是:先进后出(FILO, First In Last Out)。相关阅读:java数据结构与算法之栈(Stack)设计与实现

平衡二叉树(Self-balancing binary search tree)

平衡二叉树(百度百科,平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等)

红黑树

红黑树特点:

  1. 每个节点非红即黑;
  2. 根节点总是黑色的;
  3. 每个叶子节点都是黑色的空节点(NIL节点);
  4. 如果节点是红色的,则它的子节点必须是黑色的(反之不一定);
  5. 从根节点到叶节点或空子节点的每条路径,必须包含相同数目的黑色节点(即相同的黑色高度)。

当插入或者删除结点的时候,红黑树的规则可能被打破,需要调整以维持规则。
调整方法:变色和旋转。旋转又分为左旋转和右旋转。很复杂,菜鸡先攒着。

红黑树的应用:

TreeMap、TreeSet以及JDK1.8的HashMap底层都用到了红黑树。

为什么要用红黑树?

简单来说红黑树就是为了解决二叉查找树的缺陷,因为二叉查找树在某些情况下会退化成一个线性结构。详细了解可以查看 漫画:什么是红黑树?(也介绍到了二叉查找树,非常推荐)

推荐文章:

B-,B+,B*树(B表示平衡树)

B树,非叶节点含有关键字信息,是数据结构寡人印象最深的那个。

B-tree是B+-tree的变体,在B+树的基础上(所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针),B树中非根和非叶子结点再增加指向兄弟的指针;B树定义了非叶子结点关键字个数至少为(2/3)M,即块的最低使用率为2/3(代替B+树的1/2)。

  1. B+ 树的叶子节点链表结构相比于 B- 树便于扫库,和范围检索。
  2. B+树支持range-query(区间查询)非常方便,而B树不支持。这是数据库选用B+树的最主要原因。B+树也更适合操作系统中的文件索引。

原因如下:

  •  B+-tree的磁盘读写代价更低

B+-tree的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B 树更小。

如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。

一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了。
举个例子,假设磁盘中的一个盘块容纳16bytes,而一个关键字2bytes,一个关键字具体信息指针2bytes。

一棵9阶B-tree(一个结点最多8个关键字)的内部结点需要2个盘快。而B+ 树内部结点只需要1个盘快。当需要把内部结点读入内存中的时候,B 树就比B+ 树多一次盘块查找时间(在磁盘中就是盘片旋转的时间)。

  • B+-tree的查询效率更加稳定

由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当

  1. B树 是B+树的变体,B树分配新结点的概率比B+树要低,空间使用率更高;

LSM 树

B+树最大的性能问题是会产生大量的随机IO,随着新数据的插入,叶子节点会慢慢分裂,逻辑上连续的叶子节点在物理上往往不连续,甚至分离的很远,但做范围查询时,会产生大量读随机IO。

对于大量的随机写也一样,举一个插入key跨度很大的例子,如7->1000->3->2000 ... 新插入的数据存储在磁盘上相隔很远,会产生大量的随机写IO.


祢豆子
1 声望0 粉丝