【SpringBoot DB 系列】Redis 高级特性之 HyperLoglog

hyperloglog 算法,利用非常少的空间,实现比较大的数据量级统计;比如我们前面在介绍 bitmap 的过程中,说到了日活的统计,当数据量达到百万时,最佳的存储方式是 hyperloglog,本文将介绍一下 hyperloglog 的基本原理,以及 redis 中的使用姿势

<!-- more -->

I. 基本使用

1. 配置

我们使用 SpringBoot 2.2.1.RELEASE来搭建项目环境,直接在pom.xml中添加 redis 依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

如果我们的 redis 是默认配置,则可以不额外添加任何配置;也可以直接在application.yml配置中,如下

spring:
  redis:
    host: 127.0.0.1
    port: 6379
    password:

2. 使用姿势

我们下来看使用姿势,原理放在后面说明

redis 中,hyperlolog使用非常简单,一般就两个操作命令,添加pfadd + 计数pfcount;另外还有一个不常用的merge

a. add

添加一条记录

public boolean add(String key, String obj) {
    // pfadd key obj
    return stringRedisTemplate.opsForHyperLogLog().add(key, obj) > 0;
}

b. pfcount

非精准的计数统计

public long count(String key) {
    // pfcount 非精准统计 key的计数
    return stringRedisTemplate.opsForHyperLogLog().size(key);
}

a. merge

将多个 hyperloglog 合并成一个新的 hyperloglog;感觉用的场景并不会特别多

public boolean merge(String out, String... key) {
    // pfmerge out key1 key2  ---> 将key1 key2 合并成一个新的hyperloglog out
    return stringRedisTemplate.opsForHyperLogLog().union(out, key) > 0;
}

3. 原理说明

关于 HyperLogLog 的原理我这里也不进行详细赘述,说实话那一套算法以及调和平均公式我自己也没太整明白;下面大致说一下我个人的朴素理解

Redis 中的 HyperLogLog 一共分了2^14=16384个桶,每个桶占 6 个 bit

一个数据,塞入 HyperLogLog 之前,先 hash 一下,得到一个 64 位的二进制数据

  • 取低 14 位,用来定位桶的 index
  • 高 50 位,从低到高数,找到第一个为 1 出现的位置 n

    • 若桶中值 > n,则丢掉
    • 反之,则设置桶中的值为 n

那么怎么进行计数统计呢?

  • 拿所有桶中的值,代入下面的公式进行计算

上面这个公式怎么得出的?

之前看到一篇文章,感觉不错,有兴趣了解原理的,可以移步: https://www.jianshu.com/p/55defda6dcd2

4. 应用场景

hyperloglog通常是用来非精确的计数统计,前面介绍了日活统计的 case,当时使用的是 bitmap 来作为数据统计,然而当 userId 分散不均匀,小的特别小,大的特别大的时候,并不适用

在数据量级很大的情况下,hyperloglog的优势非常大,它所占用的存储空间是固定的2^14
下图引用博文《用户日活月活怎么统计》

使用 HyperLogLog 进行日活统计的设计思路比较简单

  • 每日生成一个 key
  • 某个用户访问之后,执行 pfadd key userId
  • 统计总数: pfcount key

II. 其他

0. 项目

系列博文

工程源码

1. 一灰灰 Blog

尽信书则不如,以上内容,纯属一家之言,因个人能力有限,难免有疏漏和错误之处,如发现 bug 或者有更好的建议,欢迎批评指正,不吝感激

下面一灰灰的个人博客,记录所有学习和工作中的博文,欢迎大家前去逛逛

一灰灰blog


小灰灰Blog
251 声望46 粉丝