什么是贪心算法?
1 贪心算法就是在每一步都要选择最优结果,当局部最优结果结束后,得到全局最优结果。但是其实很多看似可以使用贪心算法的,往往使用贪心算法并不能得到最优解。
445 分配饼干
题目描述
有一群孩子和一堆饼干,每个孩子有一个饥饿度,每个饼干都有一个大小。每个孩子只能吃最多一个饼干,且只有饼干的大小大于孩子的饥饿度时,这个孩子才能吃饱。求解最多有多少孩子可以吃饱。
例子
输入两个数组,分别代表孩子的饥饿度和饼干的大小。输出最多有多少孩子可以吃饱的数量。<br/>
Input: [1,2], [1,2,3]<br/>
Output: 2<br/>
在这个样例中,我们可以给两个孩子喂[1,2]、[1,3]、[2,3]这三种组合的任意一种。<br/>
思考 1
这里很明显是属于贪心算法,优先把饥饿度最小的孩子用最小的饼干喂饱,一定可以得到最多的。
实现1
export default (childrens, cookies) => {
if (!childrens || childrens.length === 0) return 0;
childrens.sort();
cookies.sort();
// 最多可以有多少孩子
let res = 0;
// 已经分配的饼干索引
let cookiesIndex = 0;
// 优先使用最小的饼干喂饱饥饿最下的孩子
for (let i = 0; i < childrens.length; i++) {
for (let j = cookiesIndex; j < cookies.length; j++) {
if (cookies[j] >= childrens[i]) {
res++;
cookiesIndex = j + 1;
break;
}
}
}
return res;
};
算法时间复杂度 O(childrens.length\*cookies.length), 空间复杂度 O(1)
763-划分字母区间
题目描述
字符串 S 由小写字母组成。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。返回一个表示每个字符串片段的长度的列表。
例子
输入:S = "ababcbacadefegdehijhklij"<br/>
输出:[9,7,8]<br/>
解释:<br/>
划分结果为 "ababcbaca", "defegde", "hijhklij"。<br/>
每个字母最多出现在一个片段中。<br/>
像 "ababcbacadefegde", "hijhklij" 的划分是错误的,因为划分的片段数较少。<br/>
提示
S的长度在[1, 500]之间。<br/>
S只包含小写字母 'a' 到 'z' 。
思考 1
1 思路很简单,利用递归,不断的去查找<br/>
2 利用贪心算法和双指针,首先使用一个数组存储所有字符出现的最后位置,然后利用双指针,一个指向子串开始的位置,一个指向子串结束的位置,然后不断查找,当发现一个字母已经到达了它在字符串中的最后位置的时候,就是相当于发现了一个符合条件的子串。
代码很简单,稍微看下,就明白了。<br/>
这里可以得到一个小提示,一旦涉及到字符串的时候,很自然的就要想到使用一个长度为26的数组来存储。
实现1
/**
* @param {string} S
* @return {number[]}
*/
const getBigStr = (S, begin, res) => {
let max = begin;
const len = S.length;
if (begin >= S.length) {
return;
}
const lastIndex = S.lastIndexOf(S[begin]);
if (lastIndex !== -1) {
max = Math.max(max, lastIndex);
let s1 = S.substring(begin, lastIndex + 1);
for (let i = 1; i < s1.length; i++) {
const newLastIndex = S.lastIndexOf(s1[i]);
if (newLastIndex > max) {
max = newLastIndex;
s1 = S.substring(begin, max + 1);
}
}
res.push(S.substring(begin, max + 1));
} else {
res.push(S[begin]);
max = begin++;
}
return max;
};
export default (S) => {
let res = [];
let max = -1;
while (max < S.length) {
max = getBigStr(S, max + 1, res);
}
return res.map((item) => item.length);
};
实现2
export default (S) => {
if (S == null || S.length === 0) {
return null;
}
const list = [];
// 记录每个字符出现在字符串中的最后的位置
const map = new Array(26).fill(0);
for (let i = 0; i < S.length; i++) {
map[S.charCodeAt(i) - 97] = i;
}
// 记录每个子串出现的开始和结束
let last = 0;
let start = 0;
for (let i = 0; i < S.length; i++) {
last = Math.max(last, map[S.charCodeAt(i) - 97]);
if (last === i) {
list.push(last - start + 1);
start = last + 1;
}
}
return list;
};
时间复杂度O(n), 空间复杂度O(1)
435 区间问题
题目描述
给定多个区间,计算让这些区间互不重叠所需要移除区间的最少个数。起止相连不算重叠。
例子
输入是一个数组,数组由多个长度固定为 2 的数组组成,表示区间的开始和结尾。输出一个 整数,表示需要移除的区间数量。
Input: [[1,2], [2,4], [1,3]]<br/>
Output: 1<br/>
在这个样例中,我们可以移除区间 [1,3],使得剩余的区间 [[1,2], [2,4]] 互不重叠
思考 1
这里的贪心策略使用是不明显的,需要做一些转换,但是如何转换呢?<br/>
这个首先得自己思考下,然后才能有收获,不然看完题解也很快就忘记了。<br/>
思考最好的方法是多写几个测试用例,看下如何解决。<br/>
比如测试用例中[[1,2], [2,4], [1,3]],为什么会删除[1,3],很明显是[1,3]与[1,2]的区别就是3比2大,如果[1,3] 变成[0,5]呢?<br/>
则输入的数组变成[[1,2], [2,4], [0,5]],可以很明显看出删除[0,5]<br/>
如果输入的数组变成[[1,2], [2,4], [5,7]]呢,可以明显看出不需要删除任何数组
通过以上的例子是不是发现了什么?<br/>
所谓的贪心算法就是找到局部的最优解,然后判断局部的最优解是否是全局的最优解?<br/>
这里是不是发现如果想删除最少的数组,只需要把跨度最大的数组删除就可以了。<br/>
也就是如果两个区间重合,删除其中一个区间的结尾最小的区间,因为区间结尾最小,说明以后删除的区间也就越少,也就是这里的贪心。
实现1
/**
* @param {number[][]} intervals
* @return {number}
*/
export default (intervals) => {
if (!intervals || intervals.length === 0 || intervals.length === 1) return 0;
intervals.sort((a, b) => a[1] - b[1]);
let min = 0;
for (let i = 1; i < intervals.length; ) {
if (
(intervals[i][0] < intervals[i - 1][1] && intervals[i][0] >= intervals[i - 1][0]) ||
intervals[i][0] < intervals[i - 1][0]
) {
min++;
intervals.splice(i, 1);
} else {
i++;
}
}
return min;
};
时间复杂度O(nlgn)空间复杂度O(1)
实现2
/**
* @param {number[][]} intervals
* @return {number}
*/
export default (intervals) => {
if (!intervals || intervals.length < 2) return 0;
intervals.sort((a, b) => {
if (a[0] === b[0]) {
return a[1] - b[1];
} else {
return a[0] - b[0];
}
});
let count = 0;
for (let i = 1; i < intervals.length; ) {
if (intervals[i][0] < intervals[i - 1][1]) {
if (intervals[i][1] > intervals[i - 1][1]) {
intervals.splice(i, 1);
} else {
intervals.splice(i - 1, 1);
}
count++;
} else {
i++;
}
}
return count;
};
时间复杂度O(nlgn)空间复杂度O(1)
605. 种花问题
题目描述
假设你有一个很长的花坛,一部分地块种植了花,另一部分却没有。可是,花卉不能种植在相邻的地块上,它们会争夺水源,两者都会死去。
给定一个花坛(表示为一个数组包含0和1,其中0表示没种植花,1表示种植了花),和一个数 n 。能否在不打破种植规则的情况下种入 n 朵花?能则返回True,不能则返回False。
例子
输入是一个数组,数组由多个长度固定为 2 的数组组成,表示区间的开始和结尾。输出一个 整数,表示需要移除的区间数量。
输入: flowerbed = [1,0,0,0,1], n = 1<br/>
输出: True<br/>
在这个样例中,可以把花种在2的位置上<br/>
输入: flowerbed = [1,0,0,0,1], n = 2<br/>
输出: False<br/>
因为这里有两颗花,不论第一棵花种在哪里,都会有相连的,从而导致有连在一起的两颗花
注意:
1 数组内已种好的花不会违反种植规则。<br/>
2 输入的数组长度范围为 [1, 20000]。<br/>
3 n 是非负整数,且不会超过输入数组的大小。
思考 1
贪心算法首先最重要的就是要寻找到最优解?<br/>
那这里的最优解是什么呢?或者换句话说我们怎么做才是最贪心的呢?
当 [1,0,0,0,1], n = 1的时候,最贪心的肯定是从第一个可以种的位置种植<br/>
当 [1,0,0,0,1], n = 2的时候,最贪心的肯定是从第一个可以种的位置种植,如果发现第二个没有位置可以种植,则返回false
实现1
/**
* @param {number[]} flowerbed
* @param {number} n
* @return {boolean}
*/
// [1, 0, 0, 0, 1]
// [1,0,0,0,1,0,0]
export default (flowerbed, n) => {
for (let i = 0; i < flowerbed.length; ) {
if (i === 0 && flowerbed[i] === 0 && flowerbed[i + 1] !== 1) {
flowerbed[i] === 1;
n--;
i += 2;
} else if (i === flowerbed.length - 1 && flowerbed[i] === 0 && flowerbed[i - 1] !== 1) {
n--;
i++;
} else if (flowerbed[i] === 0 && flowerbed[i - 1] !== 1 && flowerbed[i + 1] !== 1) {
flowerbed[i] = 1;
n--;
i += 2;
} else {
i++;
}
}
return n <= 0;
};
时间复杂度O(n)空间复杂度O(1)
452. 用最少数量的箭引爆气球
题目描述
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。
一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
例子1
输入:points = [[10,16],[2,8],[1,6],[7,12]]<br/>
输出:2<br/>
解释:对于该样例,x = 6 可以射爆 [2,8],[1,6] 两个气球,以及 x = 11 射爆另外两个气球<br/>
例子2
输入:points = [[1,2],[3,4],[5,6],[7,8]]<br/>
输出:4
例子3
输入:points = [[1,2],[2,3],[3,4],[4,5]]<br/>
输出:2
注意:
1 0 <= points.length <= 104<br/>
2 points[i].length == 2<br/>
3 -231 <= xstart < xend <= 231 - 1
思考 1
当 [[10,16],[2,8],[1,6],[7,12]]的时候,我们想用最少的箭去射爆更多的气球,很自然的能够想到我们射出的箭肯定得能够穿越更多的空间。<br/>
比如这个例子中[2,8],[1,6],我们需要用2-6中间的任何一支箭,比如2,3,4,5,6,但是我们同时又希望我们这支箭可以射爆更多的区间,那应该从2,3,4,5,6中选择那只箭呢?
思考一下<br/>
很容易就想到肯定是最大的那支箭,也就是6,因为只有越大,我们才能射爆更多的其他区间。<br/>
所以这里也就是我们的最优解。
实现1
/**
* @param {number[][]} points
* @return {number}
*/
export default (points) => {
const rowLen = points.length;
if (rowLen === 0) return 0;
const colLen = 2;
points.sort((a, b) => a[0] - b[0]);
let count = 1;
let pre = points[0];
for (let i = 1; i < points.length; i++) {
if (points[i][0] < pre[1]) {
pre[0] = Math.max(points[i][0], pre[0]);
pre[1] = Math.min(points[i][1], pre[1]);
} else if (points[i][0] === pre[1]) {
pre[0] = points[i][0];
pre[1] = points[i][0];
} else {
pre = points[i];
count++;
}
}
return count;
};
实现2
/**
* @param {number[][]} points
* @return {number}
*/
export default (points) => {
const rowLen = points.length;
if (rowLen === 0) return 0;
points.sort((a, b) => a[1] - b[1]);
let count = 1;
// 首先使用最大的箭头,可以射到最多的
let arrowNum = points[0][1];
for (let i = 1; i < points.length; i++) {
if (points[i][0] > arrowNum) {
count++;
arrowNum = points[i][1];
}
}
return count;
};
时间复杂度O(nlgn) 空间复杂度O(1)
763-划分字母区间
题目描述
字符串 S 由小写字母组成。我们要把这个字符串划分为尽可能多的片段,同一个字母只会出现在其中的一个片段。返回一个表示每个字符串片段的长度的列表。
例子1
输入: S = "ababcbacadefegdehijhklij"<br/>
输出: [9,7,8]<br/>
解释:<br/>
划分结果为 "ababcbaca", "defegde", "hijhklij"。<br/>
每个字母最多出现在一个片段中。<br/>
像 "ababcbacadefegde", "hijhklij" 的划分是错误的,因为划分的片段数较少。<br/>
注意:
1 S的长度在[1, 500]之间。<br/>
2 S只包含小写字母'a'到'z'。<br/>
思考 1
这里是主要是贪心算法,首先肯定想到了贪心<br/>
另外这里看到提示S只包含小写字母'a'到'z',因为以前做过很多的题目,只要涉及到小写字母'a'到'z',就联想到了使用一个大小为26的数组来存储a到z出现的次数或者位置<br/>
回到正题,看下测试用例<br/>
S = "ababcbacadefegdehijhklij"<br/>
划分结果为 "ababcbaca", "defegde", "hijhklij"。<br/>
每个字母最多出现在一个片段中。<br/>
很明显可以看出,每个划分字符串里边每个字母都是只出现在字符串里边,比如遍历字符串的时候,如果遇到a,则首先找到a最后出现的位置,就会找到一个子串,如果子串里边所有的字母都出现在这个子串里边,则可以认定这个子串可以划分出来,如果不是则更新子串的大小,重新计算。实现1就是这个思路。
那这里和贪心有什么关系呢?<br/>
我的理解是就是每次把自己可以找到的最大子串找到。<br/>
当然这里实现1可以改进,不去不断的更新子串,利用一个数组存储每个字母在字符串中出现的最后一个位置,我们可以遍历字符串,当发现一个字母出现的位置是它在字符串中出现的位置的时候,就可以划分为一个子串,原理很简单,稍微看下代码就可以了。
实现1
/**
* @param {string} S
* @return {number[]}
*/
const getBigStr = (S, begin, res) => {
let max = begin;
const len = S.length;
if (begin >= S.length) {
return;
}
const lastIndex = S.lastIndexOf(S[begin]);
if (lastIndex !== -1) {
max = Math.max(max, lastIndex);
let s1 = S.substring(begin, lastIndex + 1);
for (let i = 1; i < s1.length; i++) {
const newLastIndex = S.lastIndexOf(s1[i]);
if (newLastIndex > max) {
max = newLastIndex;
s1 = S.substring(begin, max + 1);
}
}
res.push(S.substring(begin, max + 1));
} else {
res.push(S[begin]);
max = begin++;
}
return max;
};
export default (S) => {
let res = [];
let max = -1;
while (max < S.length) {
max = getBigStr(S, max + 1, res);
}
return res.map((item) => item.length);
};
实现2
export default (S) => {
if (S == null || S.length === 0) {
return null;
}
const list = [];
// 记录每个字符出现在字符串中的最后的位置
const map = new Array(26).fill(0);
for (let i = 0; i < S.length; i++) {
map[S.charCodeAt(i) - 97] = i;
}
// 记录每个子串出现的开始和结束
let last = 0;
let start = 0;
for (let i = 0; i < S.length; i++) {
last = Math.max(last, map[S.charCodeAt(i) - 97]);
if (last === i) {
list.push(last - start + 1);
start = last + 1;
}
}
return list;
};
时间复杂度O(n),空间复杂度O(1)
122. 买卖股票的最佳时机 II
题目描述
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。<br/>
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
例子1
输入: [7,1,5,3,6,4]<br/>
输出: 7<br/>
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。<br/>
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。<br/>
例子2
输入: [1,2,3,4,5]<br/>
输出: 4<br/>
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。<br/>
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
例子3
输入: [7,6,4,3,1]<br/>
输出: 0<br/>
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0<br/>
注意:
1 1 <= prices.length <= 3 * 10 ^ 4<br/>
2 0 <= prices[i] <= 10 ^ 4
思考 1
这里就很简单了,我们如果想获取收益最大,肯定是买在最低点,卖在最高点。<br/>
我们只需要使用贪心,找到前面连续降的最低点,然后卖在连续升的最高点就可以了。<br/>
实现1
/**
* @param {number[]} prices
* @return {number}
*/
export default (prices) => {
let n = prices.length,
lastBuy = -A[0],
lastSold = 0;
if (n === 0) return 0;
for (let i = 1; i < n; i++) {
let curBuy = Math.max(lastBuy, lastSold - A[i]);
let curSold = Math.max(lastSold, lastBuy + A[i]);
lastBuy = curBuy;
lastSold = curSold;
}
return lastSold;
};
时间复杂度O(n),空间复杂度O(1)
406. 根据身高重建队列
题目描述
假设有打乱顺序的一群人站成一个队列。 每个人由一个整数对 (h, k) 表示,其中 h 是这个人的身高,k 是应该排在这个人前面且身高大于或等于 h 的人数。 例如:[5,2] 表示前面应该有 2 个身高大于等于 5 的人,而 [5,0] 表示前面不应该存在身高大于等于 5 的人。
编写一个算法,根据每个人的身高 h 重建这个队列,使之满足每个整数对 (h, k) 中对人数 k 的要求。
例子1
输入:[[7,0], [4,4], [7,1], [5,0], [6,1], [5,2]]<br/>
输出:[[5,0], [7,0], [5,2], [6,1], [4,4], [7,1]]<br/>
注意:
1 总人数少于 1100 人
思考 1
这道题目确实不是很好理解,但是如果看过解法之后,就可以很好的利用贪心来解释。<br/>
比如输入[[7,0], [4,4], [7,1], [5,0], [6,1], [5,2]]的时候,当发现[7,0]的时候,前面要么没有区间,要么就是身高小于或者等于7且区间的结尾是0的区间。<br/>
那么是不是可以换个角度想,比如[7,0],它应该是放在结果中的0的位置,如果再发现一个比7小,或者等于7的区间,比如[5,0],按照正常情况下,[5,0]也应该是放在结果的0的位置上的,可以在结果的0的位置上已经有[7,0]了所以[5,0]需要插入到[7,0]的前面。<br/>
所以这里可以先按照区间开头进行降序排序,当区间开头相同的时候,进行区间结尾的升序排序。然后依次插入到一个空数组中就可以了。<br/>
这里的贪心,其实不是很明显,可能贪心体现在先保证区间开头最大的位置放到数组中合理的位置。
实现1
/**
* @param {number[][]} people
* @return {number[][]}
*/
const swap = (people, i, j) => {
const temp = people[j];
people[j] = people[i];
people[i] = temp;
};
export default (people) => {
if (!people) return [];
people.sort((o1, o2) => {
return o1[0] !== o2[0] ? o2[0] - o1[0] : o1[1] - o2[1];
});
const res = [];
for (let i = 0; i < people.length; i++) {
res.splice(people[i][1], 0, people[i]);
}
return res;
};
时间复杂度O(nlgn),空间复杂度O(n)
665. 非递减数列
题目描述
给定一个长度为 n 的整数数组,你的任务是判断在最多改变 1 个元素的情况下,该数组能否变成一个非递减数列。<br/>
我们是这样定义一个非递减数列的: 对于数组中所有的 i (1 <= i < n),满足 array[i] <= array[i + 1]。<br/>
例子1
输入: [4,2,3]<br/>
输出: True<br/>
解释: 你可以通过把第一个4变成1来使得它成为一个非递减数列。<br/>
例子2
输入: [4,2,1]<br/>
输出: False<br/>
解释: 你不能在只改变一个元素的情况下将其变为非递减数列。
注意:
1 n 的范围为 [1, 10,000]
思考 1
这里也很简单,就是不断遍历,当发现应该需要序号i的时候,如何根据i前后的数来确定修改为什么。<br/>
这里的贪心可能就是体现在如果根据需要修改的序号i的前后,来确定应该修改为什么。<br/>
如果已经修改过一次了,后面如果发现还需要修改,直接返回false
实现1
/**
* @param {number[]} nums
* @return {boolean}
*/
export default (nums) => {
let hasChangedNum = 0;
for (let i = 1; i < nums.length && hasChangedNum <= 1; i++) {
if (nums[i] < nums[i - 1]) {
hasChangedNum++;
if (nums[i - 2] <= nums[i] || i < 2) {
nums[i - 1] = nums[i];
} else {
nums[i] = nums[i - 1];
}
}
}
return hasChangedNum <= 1;
};
时间复杂度O(n),空间复杂度O(1)
贪心算法总结
贪心算法除非特备明显的可以看出需要使用贪心的,其他大多数没有必要刻意使用贪心,大多需要通过排序,修改来让数据结构变化,根据条件发现是否可以使用贪心,但大多数其实都可以无意识的使用贪心。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。