为便于查看分布在多个机器上的应用日志,常需要聚合日志. 以下是个人的实现总结
市面上的做法
- elk (es, loglash, konlia): loglash 做日志聚合(以appender)的形式, es 做存储, konlia 做可视化.
简单实现
思路: 消息放mq,消费端有序消费,记录日志
- 详细描述:
- web入口可以通过servlet filter 生成整个调用链的唯一 TraceId (可以由 请求url,业务端标识共同构成)
- 通过dubbo 的filter, 实现 调用开始的时候将traceId传入到threadLocal. 消费端调用服务端时,将traceId. 作为额外属性传参,服务端filter 接收到参数时放入到ThreadLocal 中从而达到标记同一个请求的目的.
- 自定义 logback的 Appender, 拿到ThreadLocal中的 TraceId,如果是相同的则放入RocketMq 的同一个队列,达到顺序消费的目的.继而保证记录日志是有序的.
- 消费日志时,按照队列循环打印,因为每个队列里面的对应的是整个的一个调用链的日志, 所以按照队列打印是时序正常的. 更有利于查看日志
- 注意点:
- 对于消息生产者而言, 记录日志时,虽然是顺序发送的, 但不能保证先发出的就先到达队列. 兼顾性能, 又不能采用rocketmq 的同步发送消息形式.采用sendOneWay的方式效率快,但不保证到达队列里是有序的.
- 不能用 logback 的 AsyncAppender 包装自己实现的 appender, 因为全局 traceId保存在threadLocal 中,AsyncAppender 打印日志会在新启一个线程打印日志, 之前的ThreadLocal 中的TraceId 就获取不到了.
- 示例代码
主要类放github上了
https://github.com/normalHeFei/normal_try/tree/master/java/src/main/java/wk/clulog
logback.xml
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<appender name="mqAppender1" class="wk.clulog.RocketMqAppender">
<param name="Tag" value="logTag" />
<param name="Topic" value="logTopic" />
<param name="ProducerGroup" value="logGroup" />
<param name="NameServerAddress" value="192.168.103.3:9876"/>
<layout class="ch.qos.logback.classic.PatternLayout">
<pattern>%date %p %t - %m%n</pattern>
</layout>
</appender>
<appender name="mqAsyncAppender1" class="ch.qos.logback.classic.AsyncAppender">
<queueSize>1024</queueSize>
<discardingThreshold>80</discardingThreshold>
<maxFlushTime>2000</maxFlushTime>
<neverBlock>true</neverBlock>
<appender-ref ref="mqAppender1"/>
</appender>
<root level="INFO">
<appender-ref ref="mqAppender1"/>
</root>
</configuration>
rocketmq 相关实现代码走读
- producer几种发送方式实现
- sendOneWay / sendAsync:
根据负载均衡策略选取broker,获取channel 直接发送,虽然是sendOneWay但对并发发送的数量,rocketMq其实用信号量保护了一下最大的并发数,相关代码如下
public void invokeOnewayImpl(final Channel channel, final RemotingCommand request, final long timeoutMillis)
throws InterruptedException, RemotingTooMuchRequestException, RemotingTimeoutException, RemotingSendRequestException {
request.markOnewayRPC();
boolean acquired = this.semaphoreOneway.tryAcquire(timeoutMillis, TimeUnit.MILLISECONDS);
if (acquired) {
//将信号量 的 release 用 cas 包装了一下,避免多线程环境下多个release重复操作
final SemaphoreReleaseOnlyOnce once = new SemaphoreReleaseOnlyOnce(this.semaphoreOneway);
try {
channel.writeAndFlush(request).addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture f) throws Exception {
once.release();
if (!f.isSuccess()) {
log.warn("send a request command to channel <" + channel.remoteAddress() + "> failed.");
}
}
});
} catch (Exception e) {
once.release();
log.warn("write send a request command to channel <" + channel.remoteAddress() + "> failed.");
throw new RemotingSendRequestException(RemotingHelper.parseChannelRemoteAddr(channel), e);
}
} else {
if (timeoutMillis <= 0) {
throw new RemotingTooMuchRequestException("invokeOnewayImpl invoke too fast");
} else {
String info = String.format(
"invokeOnewayImpl tryAcquire semaphore timeout, %dms, waiting thread nums: %d semaphoreAsyncValue: %d",
timeoutMillis,
this.semaphoreOneway.getQueueLength(),
this.semaphoreOneway.availablePermits()
);
log.warn(info);
throw new RemotingTimeoutException(info);
}
}
}
- sendMessageSync
通过countDownLatch实现同步返回. 代码如下:
channel.writeAndFlush(request).addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture f) throws Exception {
//将结果包装成Future
if (f.isSuccess()) {
responseFuture.setSendRequestOK(true);
return;
} else {
responseFuture.setSendRequestOK(false);
}
responseTable.remove(opaque);
responseFuture.setCause(f.cause());
responseFuture.putResponse(null);
log.warn("send a request command to channel <" + addr + "> failed.");
}
});
RemotingCommand responseCommand = responseFuture.waitResponse(timeoutMillis);
//栅栏等待.
public RemotingCommand waitResponse(final long timeoutMillis) throws InterruptedException {
this.countDownLatch.await(timeoutMillis, TimeUnit.MILLISECONDS);
return this.responseCommand;
}
//回调返回结果时,解除栅栏
public void putResponse(final RemotingCommand responseCommand) {
this.responseCommand = responseCommand;
this.countDownLatch.countDown();
}
- consumer 是如何有序消费的
直接看代码
try {
//processQueue 为队列消息的处理快照,记录了处理消息的偏移量等信息, 通过对处理队列加锁来实现 单个队列里面消息的顺序消费.
this.processQueue.getLockConsume().lock();
if (this.processQueue.isDropped()) {
log.warn("consumeMessage, the message queue not be able to consume, because it's dropped. {}",
this.messageQueue);
break;
}
status = messageListener.consumeMessage(Collections.unmodifiableList(msgs), context);
} catch (Throwable e) {
log.warn("consumeMessage exception: {} Group: {} Msgs: {} MQ: {}",
RemotingHelper.exceptionSimpleDesc(e),
ConsumeMessageOrderlyService.this.consumerGroup,
msgs,
messageQueue);
hasException = true;
} finally {
this.processQueue.getLockConsume().unlock();
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。