消息队列

什么是消息队列

举一个简单的例子:在网上买了海鲜,快递小哥给我送快递的时候我正好在上班,家中无人签收。而快递又不能推迟送,可能会造成海鲜腐坏,而快递小哥还需要派送其他人的快递,此时就陷入了僵局。
此时家中楼下正好有一个便利店,快递小哥将快递放入便利店,而我下班后再去便利店中取。这样就避免了僵局的发生。
原来快递小哥和我之间的联系就变成了快递小哥和便利店联系,而我回去后或有时间了再和便利店联系。便利店成为了中转地。

例子中的便利店便相当于消息队列,而快递小哥相当于生产者。我相当于消费者。这就是消息的三个重要组成。而消息队列有包含很多其他的重要组成。
在上边的例子中消息队列的主要作用是解耦合。
消息队列的作用还有削峰填谷,异步处理,日志处理,消息通讯等

消息队列的优势

同异步处理流程对比:

同步处理
image.png
异步处理
image.png
增加系统响应速度

削峰填谷:

image.png

  1. 服务器在接收到用户请求后,首先写入消息队列。这时如果消息队列中消息数量超过最大数量,则直接拒绝用户请求或返回跳转到错误页面;
  2. 秒杀业务根据秒杀规则读取消息队列中的请求信息,进行后续处理。

日志处理:

image.png

  • 日志采集客户端:负责日志数据采集,定时写受写入Kafka队列;
  • Kafka消息队列:负责日志数据的接收,存储和转发;
  • 日志处理应用:订阅并消费kafka队列中的日志数据;

image.png

  • Kafka:接收用户日志的消息队列。
  • Logstash:做日志解析,统一成JSON输出给Elasticsearch。
  • Elasticsearch:实时日志分析服务的核心技术,一个schemaless,实时的数据存储服务,通过index组织数据,兼具强大的搜索和统计功能。
  • Kibana:基于Elasticsearch的数据可视化组件,超强的数据可视化能力是众多公司选择ELK stack的重要原因。

消息通讯:

image.png
点对点通讯架构设计中,客户端A和客户端B共用一个消息队列,即可实现消息通讯功能。
客户端A、客户端B、直至客户端N订阅同一消息队列,进行消息的发布与接收,即可实现聊天通讯方案架构设计。

消息队列的缺点

  • 系统可用性降低:系统可用性在某种程度上降低,在加入MQ之前,你不用考虑消息丢失或者说MQ挂掉等等的情况,但是,引入MQ之后你就需要去考虑了。
  • 系统复杂性提高: 加入MQ之后,你需要保证消息没有被重复消费、处理消息丢失的情况、保证消息传递的顺序性等等问题!
  • 一致性问题: 我上面讲了消息队列可以实现异步,消息队列带来的异步确实可以提高系统响应速度。但是,万一消息的真正消费者并没有正确消费消息怎么办?这样就会导致数据不一致的情况了!

消息队列的标准规范

JMS(JAVA Message Service,java消息服务)是java的消息服务,JMS的客户端之间可以通过JMS服务进行异步的消息传输。JMS(JAVA Message Service,Java消息服务)API是一个消息服务的标准或者说是规范,允许应用程序组件基于JavaEE平台创建、发送、接收和读取消息。它使分布式通信耦合度更低,消息服务更加可靠以及异步性。

JMS两种消息模型

①点到点(P2P)模型
image.png

使用队列(Queue)作为消息通信载体;满足生产者与消费者模式,一条消息只能被一个消费者使用,未被消费的消息在队列中保留直到被消费或超时。比如:我们生产者发送100条消息的话,两个消费者来消费一般情况下两个消费者会按照消息发送的顺序各自消费一半(也就是你一个我一个的消费。)

② 发布/订阅(Pub/Sub)模型

image.png

发布订阅模型(Pub/Sub) 使用主题(Topic)作为消息通信载体,类似于广播模式;发布者发布一条消息,该消息通过主题传递给所有的订阅者,在一条消息广播之后才订阅的用户则是收不到该条消息的

JMS 五种不同的消息正文格式

JMS定义了五种不同的消息正文格式,以及调用的消息类型,允许你发送并接收以一些不同形式的数据,提供现有消息格式的一些级别的兼容性。

  • StreamMessage -- Java原始值的数据流
  • MapMessage--一套名称-值对
  • TextMessage--一个字符串对象
  • ObjectMessage--一个序列化的 Java对象
  • BytesMessage--一个字节的数据流

AMQP

​ AMQP,即Advanced Message Queuing Protocol,一个提供统一消息服务的应用层标准 高级消息队列协议(二进制应用层协议),是应用层协议的一个开放标准,为面向消息的中间件设计,兼容 JMS。基于此协议的客户端与消息中间件可传递消息,并不受客户端/中间件同产品,不同的开发语言等条件的限制。

JMS vs AMQP

image.png

  • AMQP 为消息定义了线路层(wire-level protocol)的协议,而JMS所定义的是API规范。在 Java 体系中,多个client均可以通过JMS进行交互,不需要应用修改代码,但是其对跨平台的支持较差。而AMQP天然具有跨平台、跨语言特性。
  • JMS 支持TextMessage、MapMessage 等复杂的消息类型;而 AMQP 仅支持 byte[] 消息类型(复杂的类型可序列化后发送)。
  • 由于Exchange 提供的路由算法,AMQP可以提供多样化的路由方式来传递消息到消息队列,而 JMS 仅支持 队列 和 主题/订阅 方式两种。

消息队列对比

image.png

  • ActiveMQ 的社区算是比较成熟,但是较目前来说,ActiveMQ 的性能比较差,而且版本迭代很慢,不推荐使用。
  • RabbitMQ 在吞吐量方面虽然稍逊于 Kafka 和 RocketMQ ,但是由于它基于 erlang 开发,所以并发能力很强,性能极其好,延时很低,达到微秒级。但是也因为 RabbitMQ 基于 erlang 开发,所以国内很少有公司有实力做erlang源码级别的研究和定制。如果业务场景对并发量要求不是太高(十万级、百万级),那这四种消息队列中,RabbitMQ 一定是你的首选。如果是大数据领域的实时计算、日志采集等场景,用 Kafka 是业内标准的,绝对没问题,社区活跃度很高,绝对不会黄,何况几乎是全世界这个领域的事实性规范。
  • RocketMQ 阿里出品,Java 系开源项目,源代码我们可以直接阅读,然后可以定制自己公司的MQ,并且 RocketMQ 有阿里巴巴的实际业务场景的实战考验。RocketMQ 社区活跃度相对较为一般,不过也还可以,文档相对来说简单一些,然后接口这块不是按照标准 JMS 规范走的有些系统要迁移需要修改大量代码。还有就是阿里出台的技术,你得做好这个技术万一被抛弃,社区黄掉的风险,那如果你们公司有技术实力我觉得用RocketMQ 挺好的
  • kafka 的特点其实很明显,就是仅仅提供较少的核心功能,但是提供超高的吞吐量,ms 级的延迟,极高的可用性以及可靠性,而且分布式可以任意扩展。同时 kafka 最好是支撑较少的 topic 数量即可,保证其超高吞吐量。kafka 唯一的一点劣势是有可能消息重复消费,那么对数据准确性会造成极其轻微的影响,在大数据领域中以及日志采集中,这点轻微影响可以忽略这个特性天然适合大数据实时计算以及日志收集。

转载:https://www.jianshu.com/p/689...
转载:https://www.jianshu.com/p/36a...


指尖上的蠹代码
4 声望0 粉丝