1.二叉搜索树的最近公共祖先--给定一个二叉搜索树, 找到该树中两个指定节点(p&q)的最近公共祖先(root)。
首先,我们可以分为三种情况:
1.指定节点分布在最近公共节点的两侧
2.p==root&&q在root的左右子树中
3.q==root&&p在root的左右子树中
方法一:迭代
1.循环搜索 终止条件--root为空
1.p,q都在root的右子树中,则遍历root.right;
2.p,q都在root的左子树中,则遍历root.left;
3.否则找到,跳出
代码
public TreeNode lowestCommonAncestor(TreeNode root,TreeNode p,TreeNode q){
while(root!=null){
if(root.val<p.val && root.val<p.val){
root=root.right;
}else if(root.val>p.val && root.val>q.val){
root=root.left;
}else{
return root;
}
}
return root;
}
方法二:递归(个人觉得更好理解)
1.递推
当p,q在同一侧开启递归
2.返回值--最近公共祖先root;
代码
public TreeNode lowestAncestor(TreeNode root,TreeNode p,TreeNode q){
if(root.val<p.val && root.val<q.val){
return lowestCommonAncestor(root.right,p,q);
}
if(root.val>pa.val && root.val>q.val){
return
lowestCommonAncestor(root.left,p,q);
}
return root;
}
2.二叉的最近公共祖先--给定一个二叉树(注意和上面不一样,第一题是二叉搜索树), 找到该树中两个指定节点(p&q)的最近公共祖先(root)。
和第一题一样三种情况
递归
1.终止条件:
1.当越过叶子节点,则直接返回null;
2.当root==p|| root==q ,返回root;
2.递推
1.开启左递归,记为left
2.开启右递归,记为right
3.返回值
1.当left and right同时为空:不包含p和q,返回null;
2.当left and right同时不为空:说明分布在异侧,返回root;
3.left为空,right不为空
1.p,q其中一个在root的右子树中,此时right指向p;
2.p,q都在root的右子树中,此时指向最近公共节点
4.当left不为空
public TreeNode lowestCommonAncestor(TreeNode root,TreeNode p,TreeNode q){
if(root==null || root==p || root==q){
return root;
}
TreeNode left=lowestCommonAncestor( root.left,p,q);
TreeNode right=lowestCommonAncestor( root.right,p,q);
}
if(left==null && right==null){
return null;}
if(left==null){
return right;}
if(right==null){
return left;}
return root;
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。